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4.1   Introduction 

 Genetic Materials: Wind-pollinated parents were tested in field experiments for 

selection. The progeny from a parent are assumed to be related as half-sibs and 

constitute as a “family”. In another words, we only know one common parent of the 

progeny, and we assume the other parent is different for each sibling.     

 Experimental Field Designs: We will give examples for two field designs that are 

commonly used in agriculture and forestry; Randomized Complete Block Design with 

single-tree plots and Randomized Complete Block Design with multiple-tree plots (row 

plots).  

 Blocking is an experimental unit that is used to diminish the influence of environmental 

variation within a test site. Ideally, each block should be homogeneous with no apparent 

variation within a block. The experimental units (family plots) are randomly assigned 

within each block.  

4.2   Single-Tree-Plot (STP) Design 

 A progeny test of Pinus taeda was established to predict breeding values of 24 parents 

(half-sib families) for selection. A randomized complete block design was used in the 

field. There were 15 blocks at each site. Each family had only one tree per block. The 

mailto:fisik@ncsu.edu


 2 

experiment was replicated at five locations (sites) in North Carolina, USA. At age five, 

height was measured on each tree. 

4.3   The Statistical Model 

[1]  ijklikkijiijkl ESFFSBSy )()(     

where  

yijkl   is the lth observation of the jth block within the ith site for the kth family;  

μ   is the overall mean;  

Si   is the fixed ith site effect (i=1,…,5);  

B(S)j(i)  is the fixed jth block effect within the ith site (j=1,…,15);  

Fk  is the random general combining ability of the kth family, normally and 

independently distributed ~NID (0, σ
2

F), (k=1,…,24);  

SFik   is the random kth family by ith site interaction effect ~NID (0, σ
2

SF) and  

Eijkl   is the error term ~NID (0, σ
2

E).    

If we had multiple-tree plot design, then, in addition to all above terms, we would have also a 

random family by block interaction [FB(S)] term in the model. This is a plot-to-plot error.     

See Chapter 12 for the details and assumptions behind the linear mixed model. 

 

For this specific example, here is why the factors and their interactions in the model are 

considered fixed or random:  

1. We would like to explain the sources of variation for height in the experiment. How 

much of the phenotypic variation is due to genetics and how much is due to environment? 

To answer this question, we test families, a random sample of a breeding population. 

Since families represent a random sample of population (randomly selected), the family 

(F), family by site interaction (FS), and within family variation or error (E) are 

considered random. In another words, any term in the linear model having a family 

subscript (k) is considered random.  

2. The second reason we define Family effects as random is that, we would like to draw 

conclusions about the breeding population, not about those families in the experiment. 
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Heritability, additive genetic variance and phenotypic variance are all parameters that 

refer to a population. If we sample the same population and randomly select another 

group of families, we would get slightly different results.   

3. We have no inherent interest in the blocks or sites used in the experiment. We are not 

interested in how much total variation is explained by sites or blocks within sites. Instead, 

we are using sites and blocks to control environmental variation. We can always choose 

the same sites and set up the same blocks. Since they are not randomly selected, their 

effects are not random, so that sites (S) and blocks [B(S)] are considered fixed (see 

Chapter 12 for more details).   

 

4.4   Implementation with SAS MIXED Procedure 

Consider the data set described in section 4.2. The response variable is height (in feet) of trees 

measured at age five. There are 1632 trees in the experiment. Here, only the first 7 observations, 

all from the same family at one site, are shown.  

 

Obs   site   block    family         height           

 

1     A        1      F1378            17.8            

2     A        2      F1378            20.9            

3     A        3      F1378            21.4           

4     A        4      F1378            20.5            

5     A        6      F1378            18.4            

6     A        7      F1378            19.8            

7     A        8      F1378            20.0            

 

 

The linear mixed model given under the heading 4.3 for height data can be analyzed using the 

analysis of variance (ANOVA). Let‟s look at an ANOVA results for the data. 
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BOX 1: Analysis of variance and expected mean squares  

Using analysis of variance and expected mean squares (EMS) equations, we can 

calculate variance components.  

 

SOURCE  DF   SS  MS  Expected Mean Squares (EMS)  

site    s-1   SSs  MSs -  

block(site)  s(b-1)  SSb  MSb - 

family   f-1   SSf  MSf  σ
2

E + bn σ
2

SF  +  sbn σ
2

F 

site*family  (s-1)(f-1) SSsf MSsf σ
2

E + bn σ
2

SF   

Residual   remaining SSe  MSe σ
2

E   

TOTAL   sbfn-1 

Mean squares of family effect in the table is composed of Residual (σ
2

E), site*family 

(σ
2

SF) interaction and family (σ
2

F) effects as shown by the Expected Mean Squares.   

The coefficients of the EMS are; b= number of blocks, n= number of trees per family 

per block and s= number of sites. If there were no missing trees in the experiment, than 

the coefficient of site*family variance would be bn =15 (15 blocks*1 tree per family). 

Similarly, the coefficient of family variance would be sbn=75 (5 sites x 15 blocks x 1 

tree). 

 

SAS MIXED procedure can be used to obtain the expected mean squares and their 

coefficients. All you need to do is to add METHOD=TYPE3 to the SAS MIXED code-

1 as follows.  PROC MIXED DATA=hbook.op METHOD=TYPE3. One of the output 

tables for height data from the MIXED procedure is given below: 

 

The Mixed Procedure 

Type 3 Analysis of Variance 

 

Source           DF    MS     Expected Mean Square 

site              4   2103    Var(Res) + 13.3 Var(SF)   + Q(S) 

block(site)      70     31    Var(Res) + Q(B(S)) 
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family           23     30    Var(Res) + 13.3 Var(SF)   + 66.7 Var(F) 

site*family      92    4.7    Var(Res) + 13.5 Var(SF) 

Residual       1442    4.6    Var(Res) 

 

Notice that the coefficients of EMS are slightly different from fully balanced design. 

For example, the coefficient for the family effect now is 66.7 instead of 75.  

 

What is the family variance component? Family EMS equation is = Var(Res) + 

13.3Var(SF) +  66.7Var(F). We need to subtract the Residual MS and site*family MS 

from family MS and divide the remaining with the coefficient 66.7 to get family 

variance component.   

Var(F) or σ
2

F = (MSf - (MSsf + MSe)) / 66.7 = (30 – (4.7+4.6) ) / 66.7 = 0.31 

 

 

ANOVA method is not the best approach to calculate variance components mainly because the 

data are not always balanced. Instead, likelihood methods are preferred.  

 

Code 1: SAS MIXED code for STP field design 

 

This is a simple SAS MIXED code to analyze the wind-pollinated data described above. In the 

code below, the UPPERCASE words are SAS options or statements. The lowercase words are 

the ones we type in the SAS codes.  

 

PROC MIXED DATA=hbook.op METHOD=REML; 

   CLASS site block family; 

   MODEL height =site block(site); 

   RANDOM family site*family; 

RUN;  

 

Explanation of the code: 
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1. The name of the SAS data set to be analyzed is hbook.op. The data file name has two 

parts. The first part before the dot (hbook) is the library name (e.g., a folder) where the 

data set is located.  The second name (.op) is the actual name of the data set that we are 

referencing. 

2. METHOD: This is to define a method for calculation of variance components. If you do 

not type METHOD=REML, the MIXED procedure will still use REML (restricted 

maximum likelihood) to calculate variance components because it is the default method 

in the SAS MIXED procedure. You may specify a different method such as 

METHOD=TYPE3 to calculate variance components based on ANOVA. TYPE3 is an 

analysis of variance method which equates the Mean Squares to the Expected Mean 

Squares Equations and solve for variance components. There are many other statistical 

methods to calculate variance components. 

3. CLASS statement: We list the factors (independent variables) after the CLASS statement.    

As explained in the section 4.3, site, block and family are independent or classification 

(CLASS) variables in the model.   

4. MODEL statement: The response variable height is given after the MODEL statement. 

You can analyze only one trait at a time with the MIXED procedure. The fixed effects 

terms in the model (site and block(site)) are listed after the „=‟  sign. Block effect is 

nested within sites as shown by putting site in the parenthesis right after the block term. 

There is no need to list the intercept. The intercept (μ) is included in the model by default. 

5. RANDOM statement: family and family*site are random terms and they are listed after 

the RANDOM statement. The interaction is shown by putting the star sign (*) in 

between two or more terms, such as site*family.  

 

Output 1:  

Code-1 produces a lot of output (tables) by default. The list of tables produced is given below. 

We will explain some important tables (1, 2, 7, 9) here marked with bold face fonts. For the rest, 

you should look at the MIXED procedure syntax in the help system.  

1. Model Information 

2. Class Level Information 
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3. Dimensions 

4. Number of Observations 

5. Iteration History 

6. Covariance Parameter Estimates 

7. Fit Statistics 

8. Type 3 Tests of Fixed Effects 

 

                            Model Information  

 

               Data Set                     HBOOK.OP 

               Dependent Variable           height 

               Covariance Structure         Variance Components 

               Estimation Method            REML 

               Residual Variance Method     Profile 

               Fixed Effects SE Method      Model-Based 

               Degrees of Freedom Method    Containment 

 This table (Model Information) is about statistical methods used to analyze data. The name of 

the data set (HBOOK.OP) analyzed, the dependent variable (height) are listed. The method 

used to calculate the variance components is the default REML (A maximum likelihood 

based method).  

 

 

                          Class Level Information  

 

                 Class     Levels    Values 

 

                 site           5    A B C E F 

                 block         15    1 10 11 12 13 14 15 2 3 4 5 6 

                                     7 8 9 

                 family        24    F1378 F1801 F1805 

                                     F1853 F1806 F1013 

                                     F1033 F1051 F1080 

                                     F1085 F1086 F1070 

                                     F1806 F1805 F1002 

                                     F1805 F1003 F1007 

                                     F1009 F1010 F1003 

                                     F1005 F1804 F1805 

 Using this table, you can check your levels of factors (independent variables): Are there 5 

sites, 15 blocks per site, and 24 families in the data as expected? If a family is typed as 
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„f1378‟ instead of „F1378‟, SAS thinks that they are different families. Make sure that there 

are no such errors in the lists.  

 

Covariance Parameter Estimates 

                                                   

                 Cov Parm        Estimate        

 

                family            0.378       

                site*family      0.0065      

                Residual          4.645       

 The „Estimate‟ column lists the observational variance components. The family variance 

component is σ
2

F = 0.378.  The site by family interaction variance component is σ
2

SF = 0.378. 

The error or residual variance component is σ
2

E = 4.645. We can use observed variance 

components and genetic covariances between relatives to calculate causal variance 

components, such as additive genetic variance (BOX 2).  

 

 

BOX 2: Observed versus causal variance components and resemblance between half-sibs  

 

Variance components obtained from data are observational variance components. We 

simply breakdown the total phenotypic variance into groups, such as between group 

component (family), and within group component (Residual). Using the observational 

variance components and genetic covariances among relatives, we can calculate the 

causal variance components.  Additive genetic variance is the causal variance 

component arises from additive effects of genes that cause resemblance between 

relatives. Falconer and MacKay (1996) denote observational variance component by the 

symbol „σ
2
‟ and the causal components by the symbol „V‟.  

 

We know that when we have half-sibs (one parent is shared, the other parents is 

different), variance explained by family effect is 1/4 of the additive genetics variance. 

Where does this relationship come from? We will give an example similar to a work 

example given by Bruce Walsh in his lecture notes.   
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Let‟s say parent P has the overall breeding value of A=(α1, α2). O1 and O2 are half-sibs 

with genetic values of Go1=(α1+α3), and  Go2=(α1+α4). They share only one allele 

(α1) which comes from the mother tree (identical by descent or IBD). What is 

covariance of genetic values between siblings O1 and O2?  

 

Cov(Go1, Go2)    = Cov[(α1+ α3, α1+α4)] 

= Cov(α1, α1) + Cov(α1, α4) + Cov(α3, α4)  

 

As a rule, 

when x an y are unrelated (x ≠ y, i.e., not IBD) then, Cov(x,y) = 0,  

When  x and y are related (x = y, i.e., IBD) then, Cov(x,y) = Var(A)/2  

 

Cov(α1, α4) = 0 because α1 and α4 are not IDB. Similarly, Cov(α3, α4)=0.  

Then, Cov(Go1, Go2) = Cov(α1, α1) + 0 + 0  

The covariance of α1 with itself is the variance of α1.  

Cov(Go1, Go2) = Cov(α1, α1)  

= Var(α1) = Var(A)/2  

This is the covariance of genetic values between two half-sibs. 

 

The degree of resemblance is measured using the coefficient of coancestry ( xy), 

which is simply the probability of an allele in offspring being IBD. This probability for 

half-sibs O1 and O2 is 1/2. When two trees have one allele IBD, the contribution to the 

genetic covariance is Var(A)/2 as shown above.  Thus, the genetic covariance of half-

sibs is one quarter of the additive genetic variance. 

 

COVHS = Pr(1 allele IBD) x contribution Var(A)/2) = 1/2 x Var(A)/2 = 1/4 σ
2

A 

 

Assuming only the additive genetic effects (no dominance or epistatic interactions), 

family variance component from output 1 is 1/4 of the additive genetic variance:   
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Var(A) = 4 σ
2

F  = 4*0.378 = 1.511 

 

See Lynch and Walsh (1998, Chapter 7) and Falconer and MacKay (1996, Chapter 9) 

for more details about the genetic covariances among relatives. 

 

 

 

                       Type 3 Tests of Fixed Effects 

 

                                 Num     Den 

                   Effect         DF      DF    F Value    Pr > F 

 

                   site            4      92     452.01    <.0001 

                   block(site)    70    1442       6.72    <.0001 

 

 The F-tests of fixed effects factors (site and blocks within site) are given. Sites are 

significantly different from each other for height. Similarly, blocks within sites are also 

significantly different for height. 

 

 

Code 2: MIXED procedure to obtain covariances of variance components 

 

Code-1 produced many tables but additional output is needed so we can calculate standard errors 

of variance components as well as standard error of heritability. Since variance components are 

estimates, we would like to know their precision too. An option called COVTEST tells MIXED 

procedure to produce standard errors of variance components.  Another table called ASYCOV 

produces the variances and covariances of the variance components.  The new options are given 

in bold fonts in the PROC MIXED code as shown below. 

PROC MIXED DATA=hbook.Vpine ASYCOV COVTEST; 

   CLASS site block family ; 

   MODEL Height =site block(site) ; 

   RANDOM family site*family ; 

  ODS OUTPUT COVPARMS =_varcomp  ASYCOV =_cov ; 

RUN;  
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Explanation of the code: 

 

1. The ASYCOV option produces the variances of variance components (diagonal 

elements) and the covariances (off diagonal elements) between them. If you do not list 

these options after the PROC MIXED statement, these tables will not be produced as 

shown in code-1.  We need variance of variance components and covariances between 

variance components to calculate standard error of heritability or standard error of any 

other function of variance components.  

2. COVTEST produces asymptotic standard errors for the variance components. A Z value 

is calculated for each component by simply dividing the estimate by its standard error. In 

addition, a Chi-square test of the variance components (Pr Z) is produced.  

3. ODS OUTPUT creates SAS output files. The name before the ‟=‟ is the table name of the    

SAS Output Delivery System (ODS) (e.g., COVPARMS). The name after the  ‟=‟  (e.g., 

_cov) is a name we provide for the table. You may give any name instead of _varcomp or 

_cov. As a rule for this book, SAS options and statements are given in uppercase letters, 

where the name we give are lowercase and starts with underscore. You may use a 

different name for the output table, such as _varcomp_height. If you do not use the ODS 

statement, you will see the tables in the output window but they will not be created as 

SAS data sets in the work library.  

4. COVPARMS=_ varcomp requests that the table of the variance components, and their 

standard errors, approximate Z test values created by the COVTEST option be saved. By 

default, the SAS MIXED procedure uses the REML (Restricted Expected Maximum 

Likelihood) method to produce variance components. If you do not use ODS OUTPUT 

statement and COVPARMS =_varcomp, then you can not save the table of variance 

components, nor their standard errors and Z test scores as a SAS data set.   

5. ASYCOV=_cov requests that the table of covariances of the variance components be 

saved in the Work library of SAS. It is the matrix of the variances of variance 

components (in the diagonal) and the covariances between the variance components (the 

off-diagonal numbers). We need this table to estimate standard errors of the functions of 

the variance components (i.e., heritability). 



 12 

Output 2:  

Since we explained most of the MIXED procedure output in Code-1, we are only focusing on the 

COVPARMS, COVTEST and ASYCOV matrices in this section.  

Covariance Parameter Estimates 

 

                            Standard         Z 

Cov Parm        Estimate       Error     Value        Pr Z 

 

family            0.3779      0.1328      2.84      0.0022 

site*family     0.006511     0.05238      0.12      0.4505 

Residual          4.6448      0.1729     26.87      <.0001 

 

 The "Covariance Parameter Estimates" table contains the estimates (variance components), 

their standard errors, the Z value (Estimate/Stderr) and the Wald test probability value (Pr Z).  

 The effects are labeled in the "Cov Parm" column. The Estimates are observed variance 

components displayed in the Estimate column (e.g family variance components is σ
2

F= 

0.378).  

 Requesting the COVTEST option in the PROC MIXED statement produced the Standard 

Error, Z Value, and Pr Z columns. The Standard Error column contains the approximate 

standard errors of the covariance parameter estimates (variance components). The Z Value 

column is the ratio of variance component and its approximate standard error. The Pr Z 

column is the Wald tests of the variance components. Wald tests are Chi-square statistics that 

test the null hypothesis that a parameter is 0; in other words, the corresponding variable has 

no effect given that the other variables are in the model. The Wald are unreliable in small 

samples.  

 

                 Asymptotic Covariance Matrix of Estimates 

 

              Row    Cov Parm        CovP1       CovP2       CovP3 

 

              1    family           0.01765    -0.00044    -0.00009 

              2    site*family     -0.00044    0.002744    -0.00215 

              3    Residual        -0.00009    -0.00215     0.02988 
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 The values in the diagonal of the table are variances of variance components. For example, 

0.01765 is the variance of family variance component.  

 The covariance [Cov(σ
2

F, σ
2

SF)] between family variance component and Family x Site 

interaction variance component is -0.00044.  

 We can use these covariances and variances of variance components to calculate standard 

errors of any function.  

 

 

BOX 3: Components of variance and their standard errors 

 

The total variance for a given trait is phenotypic variance. Phenotypic variance (VP) is 

composed of genetic (VG) and environmental (VE) variances.  

VP = VG + VE  

 

Genetic variance is contributed by the additive (VA), dominance (VD) and epistatic (VI) 

interactions of genetic effects.  

 

 VP =  VA + VD + VI +VE  

 

The main objective of the progeny tests is to partition observed variance into genetics 

and environmental components. Additive genetic variance, phenotypic variance, 

heritability and genetic gains are calculated based on variance components.  

 

Here is an example on estimation of additive and phenotypic variances and their 

standard errors from the output-2.  

 

Causal variances and their standard errors   

The family variance (σ
2

F) is an estimate so it has an error (variance) associated with it. 

Standard error of family variance component is  

SE(σ
2

F)= )Var(σ 2

F  = 01765.0  = 0.133. 
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The variance of family variance [Var(σ
2

F)] comes from the output of SAS MIXED 

procedure. The table is called „Asymptotic Covariance Matrix of Estimates‟. See an 

example in Code-2. 

We need the variance of family variance component to calculate standard error of 

additive genetic variance or standard error of heritability. 

 

22 4 FA
       Additive genetic variance 

)16Var(σ)Var(4σ)Var(σ 2

F

2

F

2

A
    Variance of additive genetic variance 

)Var(σ4)16Var(σ)SE(σ 2

F

2

F

2

A  Standard error of additive genetic variance 

 

For example, the standard error of additive genetic variance from Output-2 is 

SE(σ
2

A) = )Var(4σ2

F  = 765)16Var(0.01  = 5)Var(0.01764  = 0.53  

 

Phenotypic variance is the sum of the observational components of variance that are 

included in the Expected Mean Square for the family effect:  

 σ
2

P = σ
2

F + σ
2

SF  + σ
2

E   

              =  0.378 + 0.0065 + 4.645 = 5.029 

 

Variance of phenotypic variance Var(σ
2

P): 

Var(σ
2

P) =Var(σ
2

F + σ
2

SF + σ
2

E) 

= Var(σ
2

F ) +Var(σ
2

SF) + Var(σ
2

E) + 2 [Cov(σ
2

F,σ
2

SF) + Cov(σ
2

F,σ
2

E) + Cov(σ
2

SF,σ
2

E)] 

 

The variance of a sum (σ
2

F + σ
2

SF + σ
2

E) is the variances of each term in the equation, 

plus 2 times of their covariances.  

Using the Asymptotic Covariance Matrix of Estimates table in the Output-2, the 

variance of phenotypic variance is 

= (0.01765+0.002744+0.02988) - 2*(0.00044+0.00009+0.00215) = 0.0449 
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Standard error of phenotypic variance SE(σ
2

P) is simply the square root of the variance.  

SE(σ
2

P) = )Var(σ 2

P = 0449.0 =0.212 

 

 

 

 

 

4.5   Using SAS/IML to Estimate Functions of Variance Components 

 

For most of functions of variance components, such as narrow-sense heritability, you may use a 

spread sheet to do the calculations. However, for more complex calculations or repeated 

calculations of the same functions, you may consider using software, such as SAS/IML. IML is a 

product of SAS designed to perform matrix calculations and operations.  

 

Remember, we created a matrix of variance components and named it as _varcomp and a matrix 

of covariances of variance components and named it _cov in Code 2. These tables are stored in 

the WORK library of SAS. We need these tables to calculate heritability and standard error of 

heritability as shown below.  

 

/* You must have SAS/IML product to run the following code*/ 

 

Code 3: Calculation of functions of variance components - 1  

We would like to calculate additive, phenotypic variances and heritability.  

 

/* Heritability estimate  - 1 */ 

/* Start IML */ 

PROC IML; 

_varcomp={0.378,  0.0065,  4.645 };  

 

Additive={4 0 0}*_varcomp ; 

Phenotypic={1 1 1}*_varcomp ;  

h2_i=Additive/Phenotypic; 

 

PRINT _varcomp Additive Phenotypic h2_i [format=6.2]; 

QUIT; 



 16 

 

Explanation of the code: 

 

1. _varcomp={0.378,  0.0065,  4.645 }: This is a row vector of variance components. We 

obtained variance components from the MIXED procedure and created a column vector 

with 3 rows.  In the row vector, the „0.378‟ is the family variance component, the 

„00065‟ is the site by family interaction variance component, and the “4.645” is the error 

or residual component.  

_varcomp=

645.4

0065.0

378.0

 

2. Additive={4  0  0}*_varcomp: We would like to calculate additive genetic variance, 

which is four times of the half-sib family variance (4*0.378). In order to multiply 0.378 

with 4, we need to create a Row vector of coefficients {4 0 0}. The product of the row 

vector of coefficients {4 0 0}and the vector of variance components {_varcomp} will 

give the additive genetic variance.  

  Additive= 004 *

645.4

0065.0

378.0

 = 5.12 

3. Phenotypic={1 1 1}*_varcomp: We need the phenotypic variance to calculate 

heritability. Remember, phenotypic variance is the sum of all variance components that 

contribute to the Expected Mean Square for the family effect. Multiplying the _varcomp 

vector by the vector of coefficients {1, 1, 1} will give us the phenotypic variance.  

Phenotypic= 111 *

645.4

0065.0

378.0

 = 5.0295 

4. PRINT: In order to see results, we use the PRINT option. Notice that there is no 

semicolon „;‟ after the PRINT option.   
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5. [format= 6.2]: This is to set the column length to 6 and the number of decimals to 2 for 

the output.  

 

Output 3: 
 

 _VARCOMP  ADDITIVE PHENOTYPIC   H2_I 

 

    0.378     1.512     5.0295   0.30 

   0.0065 

    4.645 

 

 The family variance is 0.378 so the additive genetic variance is 1.512 (4 x 0.378), phenotypic 

variance is 5.0295, and narrow-sense individual-tree heritability is 0.30.  The site x family 

variance (0.0065) and the error variance (4.645) are also listed in the above table. 

 

 

Let‟s add some more calculations to above code. The new terms are bold in the following code.  

 

 

Code 4: Calculation of functions of variance components – 2  

 

Plant and animal breeders are often interested in percentages of total variance explained by the 

factors (family, within family etc.) in the experiment.  They are also interested in the precision of 

genetic parameters. In below IML code we added the AsyCov table (covariance table) to 

calculate standard error of any function of variance components, for example additive genetic 

variance. The new additions are bold faces in the IML code 

 

/* Percent variance, heritability and StdErr – 2 */ 

PROC IML; 

/* Type variance components */ 

_varcomp={0.378,  0.0065,  4.645};  

 

/* add labels to rows of _varcomp vector using ROWN option*/ 

ROWN={family site_family Error};  

 

/* Total variance */ 
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Total = SUM (_varcomp) ;  

 

/* Percent Variance Explained by each factor */ 

VarComp_pct=_varcomp/Total*100;  

 

 

/* Additive variance */ 

Additive = {4 0 0} * _varcomp ; 

 

/* Covariance matrix */ 

_cov={0.01765    -0.00044    -0.00009,   

     -0.00044    0.002744    -0.00215,    

     -0.00009    -0.00215     0.02988}; 

 

/* Variance and StdErr of Additive Variance */ 

c_n={4, 0, 0}; 

var_A =c_n` * _cov * c_n ; *<-- variance of Additive var; 

SE_A=sqrt(var_A) ; 

 

 

PRINT  

Varcomp_pct [rowname=rown format=5.1] 

Additive  

var_A  

SE_A [format=6.3]  

h2_i [format=6.3] ; 

 

QUIT; 

 

Explanation of the code: 

 

1. ROWN: Names the rows (variance components) in the _varcomp column vector. 

2. Using the SUM function of IML, we can easily obtain the total phenotypic variance.   

3. _cov: We added the covariance matrix _cov. Remember, we created this table in the 

MIXED procedure code 2 (See Output 2). We need variances of variance components 

and the covariances between them to calculate standard errors of functions of variance 

components.  
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4. c_n: is a column vector of coefficients for additive genetic variance. The commas 

between elements (4, 0, 0) make it 3 rows and 1 column (a column vector). When we 

multiply c_n with the _cov matrix, we actually multiply variance of family variance 

(Varσ
2

F) by 4 to obtain variance of additive genetic variance (var_A).  

5. In matrix algebra in order to multiply a column vector (c_n) with a square matrix (_cov), 

we must take the transpose of the column vector (c_n`) and multiply it to the square 

matrix. In the equation below, the bold matrix [4 0 0] is the transposed c_n matrix. After 

transpose, the column vector becomes a row vector (1 row, 3 columns). 

Var_A = c_n` * _cov * c_n  

= 004  * _cov * 

0

0

4

 = 0.2824 

 

Output 4: 
 

 

VARCOMP_PCT        ADDITIVE     VAR_A   SE_A   H2_I 

 

FAMILY        7.5     1.512    0.2824  0.531  0.30 

SITE_FAMILY   0.1 

ERROR        92.4 

 

 Family factor explained 7.5% of the total phenotypic variance. The site * family interaction 

term explained only 0.1% of the total phenotypic variance, which is not significantly 

different from zero.  

 Additive genetic variance has a variance of 0.2824 and standard error of 0.531. It is a good 

idea to present an estimate with its standard error, even if it is an approximation (σ
2

A = 1.51  

0.531).    

 

Now, let‟s go further and calculate standard error of heritability using two methods; the 

Dickerson approximation and the Delta method.  
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BOX 4: Narrow-sense heritability and its standard error 

 

Narrow-sense heritability is a ratio of additive (σ
2

A) and phenotypic variances (σ
2

P):  

  
2

E

2

SF

2

F

2

F

2

P

2

A2

i
σσσ

4σ

σ

σ
h   = 1.511/ 5.029 = 0.30 

 

Variance of heritability Var( 2

ih ): 

1- Assuming phenotypic variance ( 2

P
) is a constant, we can use the Dickerson 

approximation (1969) to calculate variance of heritability:  

Var( 2

ih ) = 
22

P

2

F

)(σ

)16Var(σ
 

 

2- Delta method: Many genetic parameters are the ratios of variances and covariances, 

such as heritability. Delta method is a good approximation to obtain the variance of a 

ratio because it uses all the information of moments. The general formula for the 

expectation and variance of a ratio (x/y) would be as follows:  

 

Var(x/y) ≈ [ E(x)/E(y)]
2
 [ Var(x)/E(x)

2
 + Var(y)/E(y)

2
 – 2Cov(x,y)/E(x)E(y) ] 

 

Expectation of heritability would be as follows:  

 Var( 2

ih )= 
)σ(4σ

)σ,2Cov(4σ

)(σ

)Var(σ

)(4σ

)Var(4σ

σ

4σ
2

P

2

F

2

P

2

F

22

P

2

P

22

F

2

F

2

2

P

2

F  

 

Taking the square root the variance would give standard error. A worked example of 

Dickerson and Delta method to calculate variance of heritability is given in Code-5. See 

Appendix 1 in Lynch and Walsh (1998) for the theory of the delta method. 
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Code 5: Calculation of functions of variance components – 3  

 

/* Standard Error of heritability - 3 */ 

 

PROC IML; 

 

/* Type variance components */ 

_varcomp={0.378, 0.0065, 4.645};  

 

/* Additive genetic variance */ 

A = {4 0 0}* _varcomp;  

 

/* Phenotypic variance */ 

P = {1 1 1}* _varcomp;    

 

/* Heritability */ 

h2_i = A /P; 

 

/* Covariance matrix */ 

_cov={0.01765    -0.00044    -0.00009,   

     -0.00044    0.002744    -0.00215,    

     -0.00009    -0.00215     0.02988}; 

 

/* Coefficients of numerator (Additive var) */ 

c_n = {4,0,0};  

 

/* Coefficients of denominator (Pheno. var) */ 

c_d = {1,1,1};  

 

 

/* --- You DO NOT need to change the following code ---*/ 

 

/* Variance of Additive variance */ 

var_A   = c_n` * _cov * c_n ;  

 

/* Variance of Phenotypic variance */ 

var_P   = c_d` * _cov * c_d ;  

 

/* Covariance between Additive and Phenotypic */ 

cov_A_P = c_n` * _cov * c_d ;  
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/* Variance of heritability: Dickerson */ 

var_h2_i_dick = var_A / (P**2); 

/* Std Error of heritability: Dickerson */ 

se_h2_i_dick = SQRT(var_h2_i_dick) ; 

 

/* Variance of heritability: Delta method */ 

var_h2_i_delta=(h2_i**2)*((var_A/A**2)+(var_P/P**2)-

(2*cov_A_P/(A*P))); 

/* Std Error of heritability: Delta method */ 

SE_h2_i_delta = SQRT(var_h2_i_delta) ; 

 

PRINT  

var_P 

var_A  

h2_i [format=6.2]; 

PRINT 

var_h2_i_delta 

SE_h2_i_delta [format=6.3]; 

PRINT 

var_h2_i_dick  

SE_h2_i_dick [format=6.3]; 

QUIT; 

 

Explanation of the code: 

 

1. A: a symbol we used for additive genetic variance,  P is phenotypic variance.  

2. c_d = {1, 1, 1}: The row vector of coefficients for Phenotypic variance (denominator in 

heritability). We need these coefficients to calculate variance of P.  

3. var_P: Variance of phenotypic variance. It is simply adding all the variances of variance 

components in the equation and subtracting 2 times of covariances between three 

variance components. See BOX 3 for formula and details.   

Var_P = c_d` * _cov * c_d = 111  * _cov * 

1

1

1

 = 0.0449 

4. var_h2_i_dick: Variance of heritability using the Dickerson approximation. Here, we 

assume that P is a constant, and thus, it does not have a variance and a covariance with A. 
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In order to obtain variance of heritability, all we need to do is divide variance of A with 

the square of P. Remember; standard error is the square root of variance. 

5. var_h2_i_delta: Variance of heritability using the Delta method. In contrast to Dickerson 

assumption, here we use all the info about the variance components. From the _cov 

matrix, we know that they are not independent, but there are covariances between each 

pair.  

 

Output 5:  
 

   VAR_P  H2_I 

   0.0449  0.30 

 

VAR_H2_I_DELTA   SE_H2_I_DELTA 

     0.010           0.098 

 

VAR_H2_I_DICK    SE_H2_I_DICK 

    0.011           0.106 

 

 The narrow-sense individual-tree heritability for height is h
2
 = 0.30. The standard error based 

on the Delta is 0.098, while it is 0.106 based on the Dickerson method.  

 The standard error of heritability based on the Delta method is slightly lower than standard 

error of heritability based on Dickerson.   

 

 

BOX 5: Repeatability of family mean and its standard error 

 

In tree improvement programs the main interest could be selection of families not the 

individual trees within families. We might be interested in ranking the families and 

making genetic gain predictions based on family selection. For this, we need 

repeatability or heritability of family mean.  

 

We need to derive family mean formula from the linear model. 

Half-sib family means: 
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  ( ..k.Y )= Fk + SF.k /s + E..k./sbn    

Where, s = number of sites, b = number of blocks per site, n = number of trees per 

family per block.     

 

The variance (phenotypic) of half-sib family mean:  

  Var( ..k.Y )= Var (Fk + SF.k /s + E..k./sbn )     

 

Heritability of half-sib family mean is a ratio of family variance component (σ
2

F) and 

phenotypic variance of family mean (σ
2

P_HS):  

sbns

2

E

2

SF2

F

2

P_HS

σσ
σσ      

 

 

If we had multiple-tree plots, then, phenotypic variance half-sib family means would 

have included the family by block interaction (plot-to-plot error) term: 

Var( ..k.Y )= Var (Fk + SF.k /s + FB(S)..k /sb + E..k./sbl )   

sblsbs

2

E

2

FB(S)
2

SF2

F

2

P_HS

σσσ
σσ  

Where, l = number of trees per plot.   

 

 

Variance of half-sib family means heritability Var( 2

HSh ): 

 

1- Assuming 2

_ HSP  is a constant (Dickerson approximation):  

Var( 2

HSh ) = 
22

P_HS

2

F

)(σ

)Var(σ
 

 

2- Delta method:  
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Var( 2

HSh )= 
)σ(σ

)σ,2Cov(σ

)(σ

)Var(σ

)(σ

)Var(σ

σ

σ
2

P_HS

2

F

2

P_HS

2

F

22

P_HS

2

P_HS

22

F

2

F

2

2

P_HS

2

F  

 

A worked example from Output-2: 

Phenotypic variance of family means:    

 σ
2

P_HS = σ
2

F + σ
2

SF /s + σ
2

E /sbn 

 where s=number of sites, b=number of blocks, and n=number σ
2

P_HS = 0.378 + 

0.0065/5 + 4.645 / 66.7  = 0.441 

Since there are missing trees, sbn=66.6 instead of 75.  

Family means heritability:   

 h
2

HS = σ
2

F / σ
2

P_HS  

 = 0.378 / 0.441 = 0.86 

See appendix A1 in Lynch and Walsh (1998) for details of the delta method.     

 

 

 

 

 

 

Code 6a: Calculation of functions of variance components – 4  

 

Here, our focus is on the repeatability of half-sib family means (i.e. heritability of half-sib family 

means) and its standard error. We are interested in heritability of family means because we are 

usually interested in selecting the best families.  Genetic gains from family selection would be 

based on the heritability of family means, variation among families (phenotypic variance of 

family means) and the selection intensity.  

 

/* Repeatability of family means and SE - 4 */ 

 

PROC IML; 
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/* variance components */ 

_varcomp={0.378, 0.0065, 4.645};  

 

/* Covariance matrix */ 

_cov={0.01765    -0.00044    -0.00009,   

     -0.00044    0.002744    -0.00215,    

     -0.00009    -0.00215     0.02988}; 

 

c_n = {1, 0, 0}; *<-Coefficients of numerator; 

F=c_n`*_varcomp ; *<-Family variance component; 

 

/* Coefficients of denominator */ 

site=5 ; numtree=66.7 ; 

 

c_d={1, 1, 1}; 

c_d[2,1]=1/site ; 

c_d[3,1]=1/numtree ; 

 

P_hs = c_d`* _varcomp ;  *<--Phenotypic var of family means;  

 

/* heritability of family means*/ 

h2_hs = F /P_hs; 

 

/* --- You DO NOT need to change the following code ---*/ 

var_F    = c_n` * _cov * c_n ; *<--variance of family; 

var_P_hs = c_d` * _cov * c_d ; *<--var of Phenotypic var; 

cov_F_P  = c_n` * _cov * c_d ; *<--covariance btw F and P_hs; 

 

/* Variance of heritability: Delta method */ 

var_h2_hs_delta=(h2_hs**2)*((var_F/F**2)+(var_P_hs/P_hs**2)-

(2*cov_F_P/(F*P_hs))); 

 

/* Standard Error of heritability */ 

SE_h2_hs_delta = SQRT(var_h2_hs_delta) ; 

 

PRINT  

c_d ; 

PRINT 

P_hs [format=6.3]  

var_P_hs [format=6.4]; 

PRINT 
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h2_hs [format=6.2] 

var_h2_hs_delta  [format=6.4] 

SE_h2_hs_delta [format=6.3]; 

QUIT; 

 

Explanation of the code: 

 

1. c_n = {1, 0, 0} : A row vector of coefficients to get family variance component from the 

_varcomp row vector. This is done by the subsequent matrix multiplication: 

F=c_n`*_varcomp.  

2. Remember that to calculate phenotypic variance of family means, we need to divide the 

variance components by certain coefficients: σ
2

P_HS = 0.378 + 0.0065/5 + 4.645 / 66.7.  

Here, for simplicity, we assumed that the data are perfectly balanced (no dead trees). The 

following code obtains these coefficients.  

/* Coefficients of denominator */ 

site=5; numtree=66.7:  We have 5 sites, 15 blocks in each site, 1 tree per 

family per block.  However, because some trees were dead, the actual (average) number 

of trees per family per site is 66.7 instead of 75. 

c_d={1,1,1} :   Create a row vector of coefficients. All three elements of the 

matrix are 1.    

c_d[2,1]=1/site:     Make the second element to 1/5.    

c_d[3,1]=1/numtree:  Make the third element to 66.7.  This is the average number 

of trees per family across 5 sites.  

 

Assuming that there are no missing trees, every family has 15 trees in each of 5 sites, the 

coefficients of denominator (phenotypic variance of family means) would be  

c_d = {1,  1/5,  1/(5*15)} or  

c_d = {1,  0.2,  0.013}.  

 

When the transpose of c_d is multiplied to the _varcomp (the row vector of variance 

components), the result would be the phenotypic variance of family means.  

P_hs = c_d`* _varcomp.  
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3. h2_hs = F /P_hs:  Heritability of family means. Family variance is divided by the 

phenotypic variance of family means. 

 

Output 6a:  
 

      C_D 

        1 

      0.2 

0.0133333 

 

 

  P_HS   VAR_P_HS 

 0.441    0.0176 

 

 

 H2_HS   VAR_H2_HS_DELTA   SE_H2_HS_DELTA 

  0.86          0.0024            0.049 

 There is considerable variation among families for height that is due to by genetic factors as 

suggested by the high heritability of family means (H2_HS=0.86 + 0.049).  The low standard 

error of 0.049 suggests that the estimate is precise. 

 

 See Box 3 and 4 for the details of formula of the functions of variance components.  

 

What coefficients do we use to calculate heritability of family mean if there is imbalance or 

if there are missing values?   

The above calculation assumes there are no missing trees. In reality, we will always have dead 

trees in progeny tests. In order to get coefficients for calculation of family mean phenotypic 

variance, we can run the MIXED Code-1 with adding the  METHOD=TYPE3as follows: 

 

Code 6b: Obtaining the coefficients for expected mean squares 

  PROC MIXED DATA=hbook.op METHOD=TYPE3; 

   CLASS site block family; 

   MODEL height =site block(site); 

   RANDOM family site*family; 

RUN;  
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Explanation of the code: 

 

1. METHOD=TYPE3: Tells MIXED procedure to use the ANOVA method to produce 

expected mean squares and their coefficients.  The default is the REML method (a 

likelihood based calculation), which does not produce expected mean squares.  

 

 

Output 6b: 

 

The Mixed Procedure 

 
Type 3 Analysis of Variance 

 

Source           DF    MS     Expected Mean Square 

 

site              4   2103    Var(Res) + 13.3 Var(SF)   + Q(S) 

block(site)      70     31    Var(Res) + Q(block(site)) 

family           23     30    Var(Res) + 13.3 Var(SF)   + 66.7 Var(F) 

site*family      92    4.7    Var(Res) + 13.5 Var(SF) 

Residual       1442    4.6    Var(Res) 

 

 The phenotypic variance of family means would be  

 

c_d = {1,  1/s,  1/(s*n)} or  

c_d = {1,  1/5,  1/66.7} = {1,  0.2,  0.015} 

 

 Thus, on average, a family had 66.7 trees instead of 75 (5 sites x 15 blocks x 1 tree=75). See 

BOX1 for details.  

 

 

4.6   Breeding Values 
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BOX 6: Half-sib family breeding values 

 

In some cases the primary interest in a progeny test is to make inferences about the 

random effects, such as breeding values of genotypes (Lynch and Walsh 1998).  

Breeding values are used to rank parents and select the best ones for future breeding or 

deployment. Here, we give brief definitions and equations about breeding values for 

wind-pollinated trees. For more details about breeding values, see related chapters in 

Falconer and MacKay (1996) and in Lynch and Walsh (1998).  

 

When a parent is crossed with a number of other parents in a breeding population, we 

measure progeny from all the crosses and estimate a mean performance of that parent. 

The deviation of the parent mean (X) from the population mean ( X ) is general 

combining ability (GCA) (see Falconer and Mackay 1996, page 274). 

 

GCA = X - X  

 

Breeding value (BV) is twice the expected deviation of its progeny mean (GCA) from 

the population mean. In another words, it is twice of GCA.   

   

BVHS = 2GCA  

 

To express BV, GCA is multiplied by two because a parent can only transmit half of its 

genes to its progeny. The other half comes from the other parent.  

 

We obtain GCA values of parents by a procedure called Best Linear Unbiased 

Predictors (BLUP). If we are interested in the effect of a particular site (make 

inferences about fixed effects) we use a procedure called Best Linear Unbiased 

Estimates (BLUE). These methods are based on the maximum likelihood theory and 

are beyond the scope of this handbook.   
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The solutions from the mixed model for family effect are the GCA values and they are 

the Best Linear Unbiased Predictions of families. See equation [4] in Chapter 12. 

 

 

 

 

 

Code 7: Estimation of breeding values 

 

To obtain GCA estimates of families (hence breeding values), we need to add some terms to the 

SAS MIXED procedure code.  The new terms added to the MIXED procedure given in Code 1 

are in bold. 

 

/* Estimation of breeding values */ 

 PROC MIXED DATA=hbook.op ; 

    CLASS site block family ; 

    MODEL Height=site block(site)/S OUTP=_pd COVB ; 

    RANDOM family site*family/S ; 

    ODS LISTING EXCLUDE SOLUTIONF SOLUTIONR COVB ; 

ODS OUTPUT SOLUTIONF=s_f SOLUTIONR=s_r COVB=_covb ; 

 run; 

 

Explanation of the code: 

 

1. The /S option after MODEL requests the BLUE of the fixed effects be produced. Such as, 

the effect of specific sites. 

2. OUTP= option after MODEL produces the residuals and predicted values for every tree 

and saves them in a data file named _pd. You may give a different name than _pd. All 

the raw data are included in file _pd, such as site number, family ID of all the trees. 

Using the RESIDUALS in the _pd data we can calculate individual tree breeding values.  
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3. COVB option after MODEL is the approximate covariance matrix of fixed-effects 

parameter estimates. We need this table to estimate standard error of individual tree 

breeding values.  

4. The /S options after RANDOM requests the table of the BLUP of random effects be 

produced.  

5. ODS LISTING EXCLUDE statements tell SAS to stop dumping large tables (i.e., 

SOLUTIONF, SOLUTIONR, COVB) into the output window of SAS. These tables can 

be very large and fill the output window quickly. 

6. ODS OUTPUT creates SAS output files. The name before the ‟=‟ is the table name of the 

SAS Output Delivery System (ODS) (e.g., SOLUTIONR). The name after the ‟=‟ (e.g., 

S_R) is a given table name. You may give any name instead of s_r. 

7. SOLUTIONF=s_f is the Best Linear Unbiased Estimates (BLUE) of the fixed effects (i.e, 

the intercept, site effects etc.). This table is the solution of the formula 3 in Chapter 12.  

8. SOLUTIONR=s_r requests that the solution for the random-effects parameters be 

produced. This is the table of the Best Linear Unbiased Predictors (BLUP) of random 

effects (i.e., General combining ability effects of parents). This table is the solution of the 

formula 5 in Chapter 12.  

 

Output 7:  

 The above MIXED procedure code produces most of the output given for the Code 1. 

The additional tables we requested (s_r, s_f, _COVB) will not be printed because we 

used the ODS LISTING EXCLUDE statements. But these tables are created and stored in 

the WORK LIBRARY of SAS. You may click on the EXPLORER tab, and then click on 

Library and the Work library icon to see those tables. We can also print (not sending to a 

printer but to see in SAS Output Window) some of those tables using the following 

codes: 

 

 

Code 8: Printing BLUE of fixed effects and BLUP of random effects 
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/* BLUE values of sites and blocks */ 

TITLE 'BLUE of fixed effects '; 

PROC PRINT DATA=s_f (OBS=7) NOOBS; 

RUN; 

 

/* BLUP values of families */ 

TITLE 'BLUP of families'; 

PROC PRINT DATA=s_r (OBS=7) NOOBS;  

WHERE EFFECT='family' ; 

RUN; 

 

Explanation of the code: 

 

1. OBS=7): The actual files s_f or s_r can be very large. We would like to see the first 

seven observations in the SAS output window. 

2. NOOBS: SAS by default prints observation number (1,2,3 …) with the data printed in the 

output window. We did not want to print column of observations. 

 

The BLUE of fixed effects and a partial of BLUP of random effects are printed.  

 

 

Output 8:  

 

                                 BLUE of fixed effects                                  

 

Effect    site    block  Estimate      StdErr      DF     tValue     Probt 

 

Intercept                 23.1708      0.4874      23      47.54    <.0001 

site        A             -3.3602      0.6745      92      -4.98    <.0001 

site        B             -4.5161      0.6387      92      -7.07    <.0001 

site        C              2.5264      0.6387      92       3.96    0.0002 

site        E              0.4126      0.6745      92       0.61    0.5423 

site        F              0           .       .        .       . 

block(site) A        1    -1.1481      0.6529    1442      -1.76    0.0789 
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 The ESTIMATE in the above printout is the Best Linear Unbiased Estimate (BLUE) of 

Sites and Blocks. The degree of freedom (DF), standard errors of BLUEs (STDERR), the 

t value and probability of t value are given. The t probability values tell us whether the 

estimate is significantly different from zero or not.  Trees in site C had the highest growth 

(BLUE of C=2.5264), and lowest growth was in site B (BLUE = - 4.5161).   These 

numbers are solutions from the mixed model they are distributed around zero.  You may 

add the grand mean or the use the ESTIMATE statement to get meaningful 

(interpretable) site estimates.  

 The output includes an estimate for the block 1 at site A. The BLUE of that block is -

1.1481. There are 15 x 5 estimates for blocks because each of 5 site has 15 blocks but we 

only presented the estimate for the block 1 at site A.  

 

 

                     BLUP of families                                  

 

                                StdErr 

        family    Estimate      Pred      DF     tValue     Probt 

 

        F1378     -0.8653      0.2745    1442      -3.15    0.0017 

        F1801     -0.4997      0.2702    1442      -1.85    0.0646 

        F1805      0.1848      0.2702    1442       0.68    0.4941 

        F1853     -0.6621      0.2665    1442      -2.48    0.0131 

        F1806      0.4823      0.2665    1442       1.81    0.0705 

        F1013     -0.5781      0.2630    1442      -2.20    0.0281 

    ... 

 The ESTIMATE in above printout is the Best Linear Unbiased Prediction (BLUP) GCA 

estimates of Families. The degree of freedom (DF), standard errors of BLUPs (STDERR 

PRED), the t value and probability of t value are given. The t probability values tell us 

whether the prediction is significantly different from zero. The BLUPs of families are 

distributed around zero that is some of the BLUP values are negative and some are positive. 

Remember that the BLUPs of families are GCA values. In order to calculate breeding values, 

either we can export the s_r table into Microsoft Excel to do calculation or we can continue 

to use SAS to the job. In below code we used SAS data steps to calculate breeding values of 

families. 
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Code 9: Calculation of family breeding values  

 

/* Calculation of BLUP family breeding values */ 

DATA bv_hs ;  

  SET s_r (WHERE=(EFFECT='family')); 

  BV_HS=2*estimate ;  

  FORMAT estimate BV_HS stderrpred 8.3 ; 

  KEEP family estimate BV_HS stderrpred; 

RUN; 

 

Explanation of the code: 

 

The above code is a data step code. The SAS file s_r produced by MIXED procedure is used 

to calculate family breeding values.  

1. The new data file named A includes only the family effects (rows) not the family*site or 

any other interaction effects. We used the WHERE clause to select the family effects.  

2. We tell SAS to look at the column named EFFECT and keep the rows that have ‟family‟.  

3. Breeding value is two times of the general combining ability because one parent (i.e. the 

family term) transmits only half of the genes to its progeny. The other half comes from 

another parent. 

4. The new file A includes FAMILY ids, general combining ability (GCA) and breeding 

values (BV_HS) of each family and the standard errors of predictions (STDERRPRED).  

 

TITLE 'BV of families' ; 

PROC PRINT DATA=bv_hs (OBS=6) NOOBS ROUND; 

RUN; 
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Output 9:  
 

BV of families 

 

                         StdErr 

family     Estimate        Pred       BV_HS 

 

F011378      -0.865       0.275      -1.731 

F011801      -0.500       0.270      -0.999 

F011805       0.185       0.270       0.370 

F011853      -0.662       0.267      -1.324 

F021806       0.482       0.266       0.965 

F051013      -0.578       0.263      -1.156 

F051033       1.322       0.274       2.643 

 

 

BOX 7: Individual tree breeding values  

 

Individual-tree breeding values (IBV) are obtained by adding parental breeding value to 

the estimated within-family deviation (Aw).  

 IBV =  BVHS + Aw 

The within family deviation (Aw) is the product of residuals from the mixed model and 

an approximate within family heritability.  

Aw = 
2

E

2

F3
( γZBXy ˆˆ )  

Where, 2

Fσ  is the family variance component (or variance due to general combining 

ability of parents), 2

Eσ  is the error variance. BX ˆ  is the product of the design matrix X, 

and BLUE of fixed effects, and γZˆ  is the product of the design matrix Z and BLUP of 

random effects.  

Each measured trait of a tree (yijkl) is adjusted for fixed and random effects 

( γZBXy ˆˆ ) in the model and then multiplied by approximate within-family 
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heritability ( 2

E

2

F σ3σ ) to obtain within family deviation Aw (Xiang and Li 2001). 

Thus, tree breeding values are comparable across blocks or sites.  

 

 

 

Code 10: Within family individual tree deviations 

 

TITLE 'Print deviation of individual trees '; 

PROC PRINT DATA=_pd (OBS=7) NOOBS ROUND; 

VAR site block family tree  Pred  StdErrPred DF Resid; 

RUN; 

 

Explanation of the code: 

 

1. We use the output file _pd from the MIXED procedure given in Code 7 to calculate tree 

breeding values. The above code prints out 7 observations from the _pd data.  

2. The file is a large one and includes raw data too. Using the VAR option we limited the 

output (variables) we want to see.  

 

Output 10:  

 

                 Breeding values of individual trees                               

 

   site    block  family   tree   Pred   StdErrPred  DF    RESID 

 

   A        1      F1378     1    17.81    0.51    1442    -0.01 

   A        1      F1801    15    18.14    0.50    1442    -0.34 

   A        1      F1805    28    18.84    0.50    1442    -2.44 

   A        1      F1853    41    18.00    0.50    1442    -0.40 

   A        1      F1806    53    19.15    0.50    1442     0.45 

   A        1      F1013    67    18.07    0.50    1442    -0.87 

   A        1      F1033    82    20.00    0.51    1442    -1.20 
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 The RESID column is the individual tree deviation ( )ˆˆ γZBXy . They are adjusted for 

fixed and random effects.  In order to calculate breeding value of a tree, we need to multiply 

that deviation (RESID) with within-family heritability and add family breeding value to the 

outcome.  

 IBV =  BVHS + Aw 

Example: Let‟s calculate breeding value of tree 1.  

 The parent of tree 1 is F1378 with a breeding value of BVHS = -1.731 (see Output 9).  

 The within family heritability is 
2

23

E

F = 
645.4

378.0*3
= 0.24 

 The within family deviation for tree 1 is -0.01.  

Breeding value of tree 1 is; 

IBV = -1.731 +  0.24* (-0.01) 

IBV =  -1.733 

Similarly, the breeding value of tree 25 of family F1806 would be; 

IBV = 0.965 + 0.24*(0.45) = 1.073 

Progeny receive half of their genes from parents. That‟s why family breeding values are 

significant part of individual tree breeding values.  In order to add family breeding values to the 

individual tree deviation, we need to merge two data files as shown below:   

 

Code 11: Calculation of individual tree breeding values 

/* Calculation of Individual tree breeding values */ 

PROC SORT DATA=bv_hs ; BY family ;  

PROC SORT DATA=_pd ; BY family ;  

 

TITLE 'Individual tree breeding values'; 

DATA bv_all ;  

  MERGE bv_hs _pd ; 

  BY family ; 

   h2_w = 3*0.378/4.645; *<--Within family heritability; 

   ibv= bv_hs + (RESID*h2_w);  
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RUN; 

 

Explanation of the code: 

1. Using the SORT procedure of SAS, we sort data files bv_hs and _pd for the common 

variable family. If you do not sort data files, you will not be able correctly merge them.  

2. MERGE: In the DATA step we are creating a new data called bv_all, by merging two 

data sets; bv_hs: family breeding values and _pd: Individual tree deviations. MERGE 

statement in DATA step put two data sets side by side.  

3. BY: The by statement make sure that every tree of a family will have new column of 

family breeding values. 

4. Within family heritability (h2_w) is calculated as 3/4 of the additive genetic variance 

(3*0.378) divided by within family variance (error variance component = 4.645).  

5. Finally, Individual tree Breeding Values (ibv) were calculated by adding family breeding 

value (bv_hs) to the product of h2_w and RESID.  
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BOX 8: Adjusted breeding values  

Breeding values are distributed around zero, being deviations from a mean value. There 

are negative and positive values. We can simply rank the breeding values and make 

selections. However, they are not meaningful to interpret or to calculate genetic gains 

over a checklot (unimproved seed). We may wish to re-express them on a scale relative 

to a standard “benchmark”. We need to estimate the grand mean for the response 

variable and add it to all the breeding values to obtain interpretable values. 

Is it OK to add the arithmetic mean to the breeding values to obtain adjusted breeding 

values? The answer is it depends. If data are unbalanced, if there are significant growth 

differences between sites, then arithmetic mean could be unreliable and significantly 

different from a grand mean based on Best Linear Unbiased Estimates (BLUE) of fixed 

effects.  

For example, for these specific data we used so far, the arithmetic mean with standard 

error for height was 21.64  0.084 but the grand mean based on BLUE of fixed effect is 

21.61  0.137. In the following code we gave an example on how to obtain the grand 

mean using the ESTIMATE statement in the MIXED Procedure: 

 

 

 
 

Code 12: Calculation of grand mean 

 

/* Calculation of grand mean */ 

PROC MIXED DATA=hbook.op ; 

    CLASS site block family; 

    MODEL Height = site block(site); 

    RANDOM family site*family; 

ESTIMATE 'GrandMean' intercept 75 site 15 15 15 15 15 

block(site) 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1     

    1 1 1 1 1  1 1 1 1 1  1 1 1 1 1   



 41 

    1 1 1 1 1  1 1 1 1 1  1 1 1 1 1     

    1 1 1 1 1  1 1 1 1 1  1 1 1 1 1   

    1 1 1 1 1  1 1 1 1 1  1 1 1 1 1     

    1 1 1 1 1  1 1 1 1 1  1 1 1 1 1/DIVISOR=75; 

RUN;  

Explanation of the code: 

 

1. The ESTIMATE statement produces a Best Linear Unbiased Estimates of the grand mean 

(overall mean) for the response variable. The ESTIMATE statement should be included 

after the RANDOM statement.  

2. Here, we have 5 sites each with 15 blocks. The total number of blocks is 75 (5 sites x 15 

blocks). Thus, the number of coefficients for blocks must be equal to the total (75). Since 

the total number of blocks in the experiment is 75, we need to give equal coefficients (75 

of 1) to each block. Each block estimate is included in the calculation.  

3. DIVISOR: The sum of the estimates for the intercept, sites and blocks would be divided 

by the total (75) to calculate the grand mean. 

 

Output 12:  

 

                           Estimates 
 

                         Standard 

Label        Estimate       Error      DF    t Value    Pr > |t| 

 

GrandMean     21.61        0.1367    1442     158.15      <.0001 

 Of course we need to merge family breeding values (Codes 7, 8, 9) with the _pd output file 

(Code 7 and 10) so we can calculate individual tree breeding values. For this task, either we 

can use SAS data steps or export the files to Excel and make calculations. Here, an example 

is given about how to merge BV_HS and _pd files using SAS.  
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Code 12: Adjusted breeding values of families and individual trees 

 

/* Code 12: Adjusted breeding values and gain calculation */ 

TITLE 'Adjusted breeding values and gains'; 

DATA bv_all; SET bv_all ; 

  GrandMean=21.61 ;  checklot=18.59 ; 

  Adj_bv_hs = bv_hs + GrandMean ; 

  Adj_ibv=ibv + GrandMean ;  

 

  Family_Gain = (Adj_bv_hs - Checklot) / Checklot*100 ; 

  Tree_Gain = (Adj_ibv - Checklot) / Checklot*100 ; 

  FORMAT ibv adj_ibv Adj_bv_hs 8.2 family_gain tree_gain 8. ; 

RUN;  

 

PROC PRINT DATA=bv_all (OBS=14) NOOBS round; 

VAR family tree  Adj_bv_hs Adj_ibv family_gain tree_gain ; 

RUN; 

 

Explanation of the code: 

 

1. SET: Using the set statement, we used the same data (bv_all) to calculate adjusted 

breeding values for families and individual trees. Genetic gains for selection of families 

and individual trees were calculated as % deviations over an improved seed source 

(Checklot). The Checklot is generally field tested together with families. 

2. The FORMAT statement is to reduce number of decimals in the variables. 

 

Output 12:  

 

 

Adjusted breeding values and gains 

 

                            Adj_bv_                 Family_       Tree_ 

family             tree          hs     Adj_ibv        Gain        Gain 

 

F011378               1       19.88       19.88           7           7 

F011378               2       19.88       20.07           7           8 
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F011378               3       19.88       20.39           7          10 

F011378               4       19.88       20.11           7           8 

F011378               5       19.88       19.60           7           5 

F011378               6       19.88       20.12           7           8 

F011378               7       19.88       20.01           7           8 

F011378               8       19.88       19.82           7           7 

F011378               9       19.88       19.94           7           7 

F011378              10       19.88       20.03           7           8 

F011378              11       19.88       20.11           7           8 

F011378              12       19.88       19.73           7           6 

F011378              13       19.88       19.64           7           6 

F011378              14       19.88       20.29           7           9 

 Genetic gain is typically calculated as selection of a group families and selection of a few of 

best individuals. 

 

 

4.1  Using a Macro Code to Predict Breeding Values 

 

You may also use a SAS macro code to estimate family and individual tree breeding values from 

open-pollinated trials. Macro codes are a way of programming to do a job automatically.  

 

Code 7: A Macro to predict breeding values of families and individual trees 

 

/* Call the SAS Macro File */ 

%INC C:\RESEARCH\Handbook\SAS\CH4OP\Macro_HS_Family_BV_stp.SAS';   

 

You need to download the macro code from the handbook web site and save it in a folder on 

your computer. Use the %INC in SAS editor window to call the macro. Make sure the address 

(folder) is correct.  

 

 

/* Change UPPERCASE WORDS parameters according to your data */ 

%HSFamilyBV(dset   = HBOOK.OP, 

            site   = SITE,  

            rep    = BLOCK,  
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            family = FAMILY,  

            msite  = Y,  

            y      = Height, 

            outpath= C:\RESEARCH\Handbook\Results);          

 

 

Explanation of the code: 

 

1. %INC is a SAS statement to call the Macro Code. The SAS macro file 

”Macro_HS_Family_BV_stp.SAS”  is saved in a directory. You may save the file in 

another directory.  

2. %HSfamilyBV is the name of the macro. In order to run the macro, you need to 

change the UPPERCASE variable names according to your data. For example, if the 

name of your  data is PINE05, replace HBOOK.OP with PINE05. If column name of 

the FAMILY is PARENTS, replace ‟FAMILY‟ with the PARENTS etc.  

After changes, select the code and hit the running man on the tool bar of SAS Editor 

window.  

 

Outputs data sets:  

The Macro code exports the following outputs to a MS Excel file named OP_Y.XLS. If the 

trait of interest is let say HEIGHT, then the file name will be OP_HEIGHT.XLS. 

(1) family breeding values,  

(2) individual tree breeding values,  which includes additive genetic variance and heritability 

(3) variance components,  

(4) covariance matrix of the variance components and  

(5) BLUE for the fixed effects  
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