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ABSTRACT There are various methods of estimating detection probabilities for avian point counts. Distance and multiple-observer methods

require the sometimes unlikely assumption that all birds in the population are available (i.e., sing or are visible) during a count, but the time-of-

detection method allows for the possibility that some birds are unavailable during the count. We combined the dependent double-observer method

with the time-of-detection method and obtained field-based estimates of the components of detection probability for northern bobwhite (Colinus

virginianus). Our approach was a special case of Pollock’s robust capture-recapture design where the probability that a bird does not sing is analogous

to the probability that an animal is a temporary emigrant. Top models indicated that observers’ detection probabilities were similar (0.78-0.84) if

bobwhite were available, but bobwhite only had an approximately 0.61 probability of being available during a 2.5-minute sampling interval.

Additionally, observers’ detection probabilities increased substantially after the initial encounter with an individual bobwhite (analogous to a trap-

happy response on the part of the observer). A simulated data set revealed that the combined method was precise when availability and detection

given availability were substantially lower. Combined methods approaches can provide critical information for researchers and land managers to

make decisions regarding survey length and personnel requirements for point-count-based surveys.

KEY WORDS availability process, Colinus wvirginianus, dependent double-observer method, detection probability, North
Carolina, northern bobwhite, perception process, point counts, Pollock’s Robust Design, time-of-detection method.

Point counts are used widely to study abundance and density
of bird populations (Ralph and Scott 1981, Ralph et al.
1995). Data are easy to collect at larger spatial scales
compared to mark and recapture methods that are
frequently costly and, therefore, limited to studies on
smaller spatial scales. Typically, point counts have been
viewed as indices of abundance and standardized protocols
are emphasized to reduce variation in detection probability
(Ralph et al. 1995). The weaknesses of this view and the
importance of estimating detection probability have been
noted for some time (e.g., Burnham 1981). Two recent
overview papers by Thompson (2002) and Rosenstock et al.
(2002) stress how important estimation of detection
probability is to sound inference based on point counts.
Detection probability (p) can be thought of as the product of
>3 components: probability that an individual bird associated
with the sample area is present during the count (pp), probability
that an individual bird is available (i.e., vocalizing or not visually
obscured) given it is present (p,), and probability that an
individual bird is detected given it is present and available (p,;
see recent review by Nichols et al. 2009). In other words, the
detection process can be represented mathematically as

P=Pppapa
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Different methods of accounting for the detection process
provide different estimates of p. For example, distance sampling
(Buckland et al. 2001) and multiple-observer methods (e.g.,
Nichols etal. 2000, Alldredge et al. 2006) only provide estimates
of p;and assume that p, and p, are both equal to one or are
constant among sites or study areas. Time-of-removal (Farns-
worth et al. 2002) and time-of-detection (Alldredge et al. 2007)
methods provide an estimate of p,»,and assume that p, is equal
to one or is constant among sites or study areas. Note that p, and
pa are not separable when time-of-removal and time-of-
detection methods are used alone. Repeated-counts methods
provide the full estimate of p,p,p, (Royle 2004, Nichols et al.
2009). None of the components of the detection process are
separable when this method is used alone. Additionally, the
abundance estimate (V) provided by repeated counts is actually a
superpopulation estimate that may be difficult to translate or
relate to habitat area or bird density in many instances (Royle
and Dorazio 2008). In other words, the population sampled
with this method includes all birds that have territories that
overlap the survey area even if some birds were not present in the
survey area on each visit.

Separating components of the detection process allows one
to determine the relative importance or contribution of each
component to the overall detection process, which in turn
could be used to inform survey design decisions such as the
optimal number of visits or length of time that should be
spent at a site. For example, consider a situation in which p,
was essentially equal to 1, but p, was very low (e.g., a species
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with low mobility and low singing rates). With this
knowledge, a practitioner might decide that available
resources should be directed at spending more time at each
point-count location than making many multiple visits of
short duration.

Separating components of the detection process requires
combining methods that account for different components
of the detection process. For example, Stanislav (2009)
demonstrated that combining the time-of-detection method
with 2 independent observers could generate separate
estimates of the 2 components p, and p,. Stanislav (2009)
illustrated this technique with data collected using simulated
aural bird detections in the field (Simons et al. 2007). We
developed and illustrated a similar model with real northern
bobwhite (Colinus virginianus) detections collected using a
combination of the dependent double-observer method and
the time-of-detection method.

Our objectives were to 1) present a modified point-count
technique that allows one to estimate 2 components
(availability and detection given availability) of the detection
process using a combined dependent double-observer and
time-of-detection approach, 2) illustrate our approach with
point-count data collected on bobwhites from eastern North
Carolina (USA) farms, 3) use our overall likelihood to compare
several sub-models of the detection process, and 4) demon-
strate that the combined approach also gives precise estimates
for a simulated scenario with lower values of p, and p,.

STUDY AREA

We collected data on 24 commercial swine farms in the
Coastal Plain of North Carolina as part of a study on bird
use of field borders in different landscape contexts.
Specifically, farms were located in Bladen, Columbus,
Duplin, Pender, Sampson, Scotland, and Robeson counties.
Treatments were arranged in a balanced 2 X 2 factorial with
field border shape (linear or nonlinear) and landscape
context (agriculture- or forest-dominated) as the factors (6
replicates in each treatment). Most farms were on a crop
rotation of corn, soybeans, and wheat. Riddle (2007) and
Riddle et al. (2008) provided detailed descriptions of field

border, farm, and landscape characteristics.

METHODS

Field Methods

The same 2 observers (J. D. Riddle and F. S. Perkins)
conducted 2-6 point counts on each farm for northern
bobwhite from 15 May to 30 June during each year of the
study. Previous analysis suggested bobwhite detectability did
not vary by treatment or year, so we combined observations
from all treatments (Riddle 2007, Riddle et al. 2008). Also,
for the sake of convenience, we only considered data from
2004 and 2005 (236 point-count surveys). We combined the
dependent double-observer approach (Nichols et al. 2000)
and the time-of-detection approach (Alldredge et al. 2007).
In the dependent double-observer approach, the primary
observer records all birds seen or heard. The secondary
observer records all birds detected by the primary, but also
records birds he or she detects that the primary does not.

The secondary observer does not share his or her unique
detections with the primary observer while the count is
taking place. Observers reverse roles with each new point
count. We used a laser range finder and site maps to aid in
locating individual birds (Riddle et al. 2008).

With the time-of-detection approach, detections of
individual birds are recorded for every interval in which
they are perceived. Our point counts were 10 minutes long
and divided into 4 intervals of 2.5 minutes each. All point
counts had an unlimited radius and were conducted between
approximately 15 minutes after sunrise and 1000 hours
(Riddle et al. 2008).

An example of a detection history for an individual
bobwhite sampled with our method might be 11, 01, 00, 11.
This detection history would indicate that the primary
observer detected the bird in the first 2.5-minute interval
(and therefore the secondary must also record it as detected),
only the secondary observer detected the bird in the second
interval, the bird was unavailable or was available and not
detected by either observer in the third interval, and the
primary observer detected the bird in the final interval.

Statistical Model Development

Dependent double-observers—We focused on the de-
pendent double-observer method (Nichols et al. 2000)
originally applied in an aerial survey context by Cook and
Jacobson (1979). The dependent double-observer approach
can be viewed as an extension of the removal method
(Zippin 1958, Seber 1982). Critical assumptions of this
method are as follows: 1) there are equal detection
probabilities of all individual birds of each species for each
observer; 2) the population is closed to births and deaths and
there is no undetected movement out of the sampled area; 3)
observers accurately assign birds to within the radius used
for the fixed-radius circle if fixed-radius counts are used; and
4) detection probability is the same irrespective of whether
an observer is in the primary or secondary role.

We can fit the dependent double-observer method using
Program MARK (White and Burnham 1999) or DOB-
SERV (Nichols et al. 2000). These models allow detection
probability to depend on covariates such as species, observer,
wind speed, and distance. Programs MARK and DOB-
SERYV use Akaike’s Information Criterion (AIC; Burnham
and Anderson 2002) to select the simplest model that
adequately explains the data. Again, note the estimate of
detection probability provided by the dependent double-
observer method is simply p,.

Time-gf-detection.—Farnsworth et al. (2002) developed
an approach that applied the removal method (Zippin 1958,
Seber 1982) to the time when birds were first detected. A
more efficient approach has been developed by Alldredge
(2004) and Alldredge et al. (2007), which uses #-sample
closed capture-recapture models based on full detection
histories (i.e., time intervals when a particular bird was
detected as well as intervals when that same bird was not
detected; Otis et al. 1978, Williams et al. 2002).

Here we can estimate p,p,, which is a special feature of the
time-of-detection method because the multiple-observer
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and distance methods cannot account for unavailable birds.
The ability to incorporate availability in the estimation of p
for time-of-detection models emerges directly from the
separation of individual detections by time intervals. It
accounts for the possibility that a bird is available in one
time interval but not in another.

Model assumptions are as follows: 1) there is no
undetected change in the population of birds within the
detection radius during the point count (i.e., the population
is closed to births and deaths and birds do not move in or
out without being detected); 2) there are no identification
errors (i.e., observers are able to accurately identify and track
individual birds with no double-counting or lumping of
individuals); 3) all individual birds of a species have a
constant per minute probability of being detected in each
interval; and 4) observers accurately assign birds to within
the fixed-radius circle (when fixed-radius plots are used).

If the probability of detection changes after the first detection
(analogous to trap response in a true capture—recapture
setting), then assumption 3 can be weakened. Trap response
models may be useful and in this application recapture
probabilities are likely greater than first capture probabilities
because an observer will be anticipating that an individual bird
of a species may call again and, thus, be more likely to be
detected if it does call. J. D. Riddle (North Carolina State
University, unpublished data) found that trap response models
often were chosen with time-of-detection data.

If the probability of detection varies among individual
birds, then heterogeneity models may be used. Much has
been written about these models in capture-recapture
literature (Burnham and Overton 1978, Otis et al. 1978,
Pollock et al. 1990, Williams et al. 2002). Link (2003) noted
model identifiability problems when these models are used.
Modeling heterogeneity in detection probability using
covariates can reduce problems associated with identifia-
bility (Huggins 1989, 1991; Alho 1990).

Modeling Availability by Combining Dependent
Observers and Time-of-Detection Methods

We combined dependent double-observer and time-of-
detection methods into one overall design, which allows
separate estimation of the components of the detection
process. Consider ¢ time intervals and 2 dependent observers
where birds are tracked throughout the count. (We suggest
that in practice # = 3-5 time intervals be used so that
heterogeneity models could possibly be fit.) This combined
method is equivalent to a robust capture-recapture design
with # primary periods (the time intervals) and 2 secondary
periods (the observers) within each primary period (Pollock
1982, Williams et al. 2002). In this case, the population is
assumed to be closed except for whether a bird is available
(sings or is visible) in an interval. In the more general robust
design, births and deaths in addition to lack of availability
(commonly referred to as temporary emigration) are
allowed. Modeling approaches already developed to account
for temporary emigration can be adapted for our application
(Kendall and Nichols 1995, Kendall et al. 1997). The
simplest model assumes that the temporal pattern of bird

song follows a random process in which the probability that
a bird sings in an interval is not dependent on whether it
sang in the previous interval. An alternative approach
assumes a Markovian process where the probability that a
bird sings in an interval depends on whether it sang in the
previous interval. For our purposes, we only consider
availability as a random process.

Under the classic random temporary emigration model, v, is
the probability that an animal is a temporary emigrant in
period 7, and y; does not depend on its value in previous
periods. In our context, y; may be thought of as the probability
that a bird is unavailable for detection in interval 7. Thus p,; =
(1 —v,)i=1, ..., tis the probability a bird is available in
interval 7. Conditional detection probabilities for each observer
in each period (pn; pani) 1 = 1, ..., ¢ also are included in the
model. Unlike the general robust design, we are assuming that
all animals survive during the point count so that ¢, = 1. In
the random availability model, an estimate of the probability
that a bird does not sing during the entire 10-minute count
can be obtained as the product of all the 1 — p,s.

To illustrate, consider a detection history for 2 observers
over 2 time periods, where the first observer is the primary
observer for a model with both time and observer effects.
The history 11, 01 denotes a bird detected by the primary
observer (and therefore the secondary observer) in interval 1
and detected only by the secondary observer in interval 2.
This history has expected cell structure:

Parpaiipa(l—pa2)par

In this case, the bird has to sing in each interval to be
detected by >1 observer. However, another history (11, 00)
has the expected cell structure:

Papan | pa(1—pa2)(1— pana) + (1= pr2)].

The 00 in the second interval means there were 2
components for the probability, the first where the bird
sings but is missed by both observers and the second where
the bird does not sing.

Based on all detection histories obtained in a study, one
can build a likelihood function and obtain parameter
estimates and standard errors. Consider # time intervals
where birds are tracked throughout the count and there are
2 observers per time period. Then, based on the information
obtained from the # = 3 detection histories (i.e., 11, 01,
and 00) for each primary observer case where 7;, i = 1,2, ...
k — 1 represents the number of birds that have the i
detection history detected when observer j is the primary
observer, we have

N!
T
nM! e nk,l’ll(N— n)'

[Pl,l(e)”u. CPE—11 (6)””1,1]

1
X oY
nipt. .- Np—12:

[212(0)™2. . pr12(0)™ 2] p ()Y

L(N;0)=
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where n= 4] > j—12Mi; denotes the total number of

detected birds, p; ; represents the multinomial cell proba-
bilities that are known functions of 0, availability and
detection probability parameters [p; (0) = f; (6)] and
pr=1— Zf;ll >_j—12tij- The model structures we exam-
ined here in the dependent double-observer setting follow a
similar form of those by Stanislav (2009) although there is
one major difference: there is no detection history where the
primary observer detects the bird and the secondary observer
does not, because the secondary observer role is only to add
information (bird detections) that the primary observer may
miss. Also for this dependent double-observer method, a
known parameter enters into the multinomial likelihood.
This parameter T is the fraction of the detection histories
where observer 1 is the primary observer (often 0.5 by
design) and, thus, 1 — 7 is for detection histories where the
roles are reversed.

For notation, we assume that the 4th detection history is
the undetected history when either observer 1 or 2 is the
primary observer, which is why the multinomial probability
is not scaled. We can do this because in any time period
when you have no detection, the probability is the same
regardless of which observer is the primary observer.
Without loss of generality, we assumed model M,, structure
where the “o” subscript indicates that detection probably is
allowed to vary with each observer and with # = 2 time
periods. If the first observer is the primary observer, the
probability of not being detected during the whole point
count is {[p1 — pa1)1 — pnd)] + (1 — p)H[p.(1 —
pa2)(1 = pna)l + (1 — p,)}. The same is true if the second
observer is the primary observer, just with nondetection
terms transposed in each time period’s probability.

Due to the structure of the undetected detection history,
we may use the conditional likelihood approach proposed by
Sanathanan (1972) for estimation of the population size, N,
which writes the likelihood above as L(IV; 0) = L;[V; px(6)]
X Ly(0), where

Ly[N: p(9)] = Wf,vln), [1=pu(O)) p(0)" "
Ly(0)= m!. .7?!71&_1! ql(e)nl' .- 716*1(6)”&71
(0
with g;(0) = 22 ,i,é()e) :

where 7 =1, 2, ... & — 1.

We optimized the conditional likelihood function, L, to
obtain estimates of the availability and detection probabil-
ities. Then, it follows from the work of Sanathanan (1972)
that for any given p that the estimate of the population size
is N = n/1 — p,, the greatest integer <n/1 — p;, which
maximizes Lj;. This is simpler computationally than
maximizing the full likelihood. We can obtain standard
errors of the derived estimates based on the second bootstrap
method presented by Norris and Pollock (1996), which we

also could use to construct confidence intervals.

Through use of the conditional likelihood maximization,
an accessible approach for finding estimates of availability
and detection probabilities, along with population size,
exists. We can find conditional likelihood estimates of
parameters directly from likelihood maximization proce-
dures available in any software computing language, such as
the optim function in R. For some instances, one may
require use of constrained optimization to guarantee that
probability estimates fall between O and 1, and in R the
function constrOptim handles the task. Akaike’s Informa-
tion Criterion can be used for model selection (Burnham
and Anderson 2002, Williams et al. 2002). The estimated
distance to each bird, detected by >1 observer, can be
included as an important covariate influencing detection
probability. Laake and Borchers (2004) provide additional
details and approaches for modeling distance as a covariate
with multiple-observer methods. Any number of observers
and time intervals can be accommodated. We follow this
approach below and provide examples to illustrate the

methodology.
Analysis

For our field data, we fit detection histories for bobwhites
with modifications of the general likelihood we introduced
previously to compare a suite of models that allowed
availability (p,) to be a random process or equal to one (i.e.,
all birds are available) and allowed for detection given
availability (p,) to vary or remain constant with time or
observer. We also allowed for an observer-based behavioral
effect in some models, which is analogous to a trap-response
model in classic capture-recapture literature where the
animal responds to presence of the trap, except that in this
case it is the observer (analogous to the trap) that is
responding to the bird. Riddle et al. (2010) discuss observer-
based behavioral effects in detail and found these models were
heavily favored in point-count methods that produced
detection histories (e.g., time-of-detection) or site histo-
ries (e.g., repeated counts or repeated presence—absence
methods). The complete set of models we considered was as
follows: p,(rand),p,(.,.,b); p,(rand),p.(.,0,b); p.(rand),p.(.,0,.);
Ptz(rand))Pd('r)'); Pa(rand)fd(taor); Ptz(all))])d()ab); Pa(au))
Pd(-aoyb); Pa(all))Pd(')or); Pa(zﬂ)ypd(yy)) and Pﬂ(a-u)fd(tao)')'
Here, letters t, o, and b represent effects of time, observer
differences in detection probability, and an observer-based
behavioral response, respectively. The parenthetical terms
“rand” and “all” refer to whether availability was random or
equal to one, respectively. We fit models in Program R and
obtained and used AIC values to select the top model. The R
code is available for interested readers upon request.

We also considered an artificial data set with low
availability and detection probabilities. We designed the
simulated data set to evaluate the relative performance of
our method for populations or species that might not be as
available or detectable given availability, as breeding season
bobwhites were on farms in eastern North Carolina. We
generated our simulated data set from a random multino-
mial distribution with cell probabilities determined from the
constant random availability model, with observer-depen-
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Table 1. Akaike’s Information Criterion (corrected for small sample size;
AIC,) model selection results for northern bobwhite. Models in the set
allow availability (p,) to be random (rand) or equal to 1 (all; i.e., all birds are
always available). Conditional detection probability (p,) is allowed to vary
with time (t), observer (o), to be different for initial and subsequent
detections (b), or to be constant (.). We collected all data on farms in the
Coastal Plain of North Carolina, USA, 2004-2005.

No. of
Model AIC, AAIC, AIC,wt parameters
o (cand), py (b)) 47176 0.00 0.46 3
2. (rand), p,s (,0,b) 472.04 0.28 0.40 5
pa (rand), p, (,,0,.) 474.71 2.95 0.11 3
pa (rand), p, (,.).) 476.53 4.77 0.04 2
2. (rand), p, (t,0,.) 487.97 16.21 0 9
20 @ll), 5 (b) 70211 230.35 0 2
20 @ll), 24 (,0,b) 70478 233.02 0 4
20 @lD), 24 () 71324 241.48 0 1
20 @), 24 (,0,.) 71406 2423 0 2
20 all), p4 (t,0,) 71897 24721 0 8

dent initial detection probabilities constant over time
intervals and elevated redetection probabilities. Specifically,
¢ = 4 time intervals and 2 dependent observers.

For this model, we defined the true population size (V) to
be 500, true probability that such a bird is available for
detection, p,, to be 0.3, probability of first detection, p,, to
be 0.5, and for subsequent detections, the detection
probability, ¢,, was 0.6.

RESULTS

The top model for the bobwhite field data was random
availability with an observer-based behavioral effect on
detection given availability (Table 1). Parameters from this
model indicated that about 60.48% (SE = 2.01) of the
population was available during any given 2.5-minute
period. Initial detection probabilities were approximately
0.80 (SE = 0.04). Once either observer had detected a
bobwhite, their probability of detecting that individual
during subsequent intervals increased to approximately 0.90
(SE = 0.02; Table 2). The second most competitive model,
according to AIC, weights, allowed for each observer to
have a unique probability of initial detection and redetection
(Table 3). However, estimates of IV from each model were
almost identical (279.18 and 279.08, respectively).

In our simulated data set, availability was estimated at 0.29
(SE = 0.03) and detection given availability was estimated
at 0.46 (SE =0.05) for first detections and 0.61 (SE = 0.06)

Table 2. Northern bobwhite parameter estimates and standard errors for
model p, (rand), p, (,,.,b) (i.e., random availability with an observer-based
behavioral effect). IV is abundance, p, is the probability of availability, p, is
the probability of detection given availability, and ¢, is conditional
redetection probability. We calculated estimates and standard errors with
B = 100 bootstrap samples. We collected all data on farms in the Coastal
Plain of North Carolina, USA, 2004-2005.

Table 3. Northern bobwhite parameter estimates and standard errors for
model p, (rand), p, (.,0,b) (i.e., random availability with observer differences
and an observer-based behavioral effect). IV is abundance; p, is the
probability of availability; p1 and p,, are the probabilities of detection given
availability for observers 1 and 2, respectively; and ¢ and ¢, are conditional
redetection probabilities for observers 1 and 2, respectively. We calculated
estimates and standard errors with B = 100 bootstrap samples. We
collected all data on farms in the Coastal Plain of North Carolina,
USA, 2004-2005.

Parameters Parameter estimates SE
N 279.08 3.51
Pa 0.606 0.023
par 0.782 0.046
Paz 0.840 0.041
Caz 0.884 0.032
) 0.922 0.023

for subsequent detections. The total population was
estimated at 525.31 (SE = 45.22) birds (Table 4).

DISCUSSION

We were able to successfully estimate components of the
detection process because we combined time-of-detection
and dependent double-observer methods. To our knowl-
edge, ours are the first estimates of availability for detection
for northern bobwhite. Our models provided reasonable
estimates of availability and detection given availability for
both initial and subsequent detections of bobwhites.

Separating the components of the detection process
demonstrated that availability within a certain span of time
(2.5 min in our case) was a more limiting factor than ability
of observers to detect calling bobwhites. These results could
help inform decisions about survey length. For example, one
could plot the probability that a bobwhite present in the
survey area is available at least once for surveys of varying
duration. Based on our top model, just over half of all
individuals are available after 2.5 minutes but nearly all
individuals should have vocalized at least once over the
course of a 10-minute count (Fig. 1).

Similarly, one could compare probability estimates that an
observer would detect an individual bobwhite at least once
given that it was available in >1 interval from the double-
observer method and time-of-detection method (Fig. 2).
For example, our top model suggests that if one visit of
2.5 minutes was made, then the probability of >1 observer
detecting an individual bobwhite is higher with the
dependent double-observer method than with one observer
on their own. However, if one observer of similar skill to

Table 4. Parameter estimates and standard errors for the simulated data
set with random availability and an observer-based behavioral effect. NV is
abundance, p, is the probability of availability, p, is the probability of
detection given availability, and ¢, is conditional redetection probability. We
calculated estimates and standard errors with B = 100 bootstrap samples.

Parameters Parameter estimates SE Parameters True value Parameter estimates SE
N 279.18 3.46 N 500 525.31 45.22
Pa 0.605 0.020 Pa 0.30 0.291 0.028
Pa 0.799 0.040 Pa 0.50 0.460 0.050
7 0.902 0.021 7 0.60 0.607 0.063
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25 5 7.5 10
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Figure 1. Probability that an individual bobwhite will be available
(vocalize) at least once over surveys of various lengths on farms in the
Coastal Plain of North Carolina, USA, 2004-2005.

those in our study used the time-of-detection method for >2
2.5-minute intervals, then they would be expected to detect
individual birds with a higher probability than one 2.5-minute
visit by 2 observers. Furthermore, 2 observers using the
dependent double-observer method combined with time-of-
detection with only two 2.5-minute intervals would be expected
to detect individual birds more often than one observer who
used time-of-detection for up to four 2.5-minute intervals.
Such comparisons could inform decisions about tradeoffs
involving personnel requirements and survey duration.

Stanislav (2009) provided examples of combining time-of-
detection and independent double-observer approaches.
Alldredge et al. (2006) showed that the independent
double-observer approach is more efficient than the
dependent approach, because capture—recapture methods
generally are more efficient than removal methods (Seber
1982). However, the independent double-observer approach
requires observers to match observations, which can
consume valuable time in the field. Furthermore, matching
errors can be substantial even when few vocal cues are
available to be mapped (Alldredge et al. 2008). In contrast,
the dependent double-observer approach does not require
matching. If the time saved by not matching (i.e., using the
dependent observer approach) is spent conducting more
samples, then gains through increased sample size may be
substantial enough to make the dependent double-observer
approach more efficient than the independent double-
observer approach in some cases (Stanislav 2009).

One critical assumption of the dependent double-observer
method is that an observer’s detection probability does not
change when they switch roles from primary to secondary. For
example, the secondary observer may tend to cue in on
individual birds that are more difficult to detect because their
role as secondary observer is specifically designed to detect
individuals that the primary is missing. However, preliminary
simulations suggest that this assumption may be relaxed
without affecting estimates of abundance (Stanislav 2009).

MANAGEMENT IMPLICATIONS

Despite its additional expense, we encourage field ornithol-
ogists and managers to consider use of this combined
double-observer time-of-detection method for at least a

0.9
0.8 -
0.7
0.6
0.5
0.4
0.3 -
0.2

0.1

== Double-observer
= Single-observer

Probability

7.5 10

2.5 &
Length of survey (min)

Figure 2. Probability of detecting a bobwhite once by one observer in a
single-observer survey and by >1 observer in a double-observer survey given
availability in >1 interval for surveys of various durations on farms in the
Coastal Plain of North Carolina, USA, 2004-2005.

subsample of their points to better understand the detection
process in field studies and potentially obtain better
estimates of population abundance. This approach should
lead to more informed decisions regarding the best use of
personnel and time thereby reducing expenses over time.
We think this is especially critical for species like northern
bobwhite, which appear to have experienced substantial
declines in recent decades.

We also encourage future work with combined methods
that consider the possibility of Markovian rather than
random availability. These models could be especially useful
because birds often sing in nonrandom bouts (Collins 2004).
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