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ABSTRACT We compared the time-of-detection and logistic regression methods of estimating probability of detection for northern
bobwhite (Colinus virginianus) coveys. Both methods are unusual in that they allow estimation of the total probability of detection (i.e., the

product of the probability that a covey is available for detection [i.e., that a covey vocalizes] and detection given availability). The logistic

regression method produced an average detection probability of 0.596 (SE = 0.020) and the time-of-detection method produced a detection
probability estimate of 0.540 (SE = 0.086), and the 2 estimates were not significantly different. This is the first evaluation of the time-of-
detection method with empirical field data. Although the time-of-detection and logistic regression method each have advantages, both can be

used under appropriate conditions to improve estimates of bobwhite abundance by allowing for the estimation of detection probabilities.

Improved estimates of bobwhite abundance will allow land managers to make more informed management decisions. (JOURNAL OF

WILDLIFE MANAGEMENT 72(6):1437-1442; 2008)
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Differences in bird detectability over space and time may
bias abundance or density estimates that do not allow for
estimation of detection probabilities (Williams et al. 2002).
Abundance estimates and detection probabilities are related
by the equation:

Ni = Ci/PA,‘ (1)

where N is the estimate of population abundance, C is the
count statistic, 4 is the estimate of detection probability, and
i is time or location of the survey. Comparing abundance
indices or counts from different times or locations may lead
to biased population comparisons and poor management
decisions if detection probability is not constant. Never-
theless, Rosenstock et al. (2002) indicated that index
methods without corrections for detection probabilities
were still used in 95% of the avian studies they reviewed.
Detection probability can be viewed as the product of 2
components: availability and detection given availability
(Marsh and Sinclair 1989, Farnsworth et al. 2002, Pollock et
al. 2004, Alldredge et al. 2006). In the context of point
counts, probability of availability is the probability that a
bird sings (or gives some other vocalization) or that it is not
visually concealed from the observer. The probability that a
bird is detected given availability is simply the probability
that a vocalizing bird is heard or that a visible bird is seen
(see Alldredge 2004, Pollock et al. 2004, Alldredge et al.
20074). Therefore, total probability of detection (p) can be

written to show its components as:
P = Papa (2)
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where p, is the probability of a bird being available and p, is
the probability of a bird being detected given that it is
available. Distance sampling and multiple-observer methods
do not allow estimation of total detection probability
(Nichols et al. 2000, Buckland et al. 2001, Alldredge et al.
2006), whereas the time-of-detection and repeated counts
methods do (Farnsworth et al. 2002, Royle and Nichols
2003, Alldredge et al. 20074).

The time-of-detection method proposed by Alldredge et
al. (20074) uses information about whether a bird is detected
from separate time intervals within the point count. In other
words, the method allows for creation of a detection history
that can be viewed in a similar manner to a capture—
recapture history in a closed-population model (Alldredge
2004, Alldredge et al. 20074). The ability of the time-of-
detection method to handle variation in bird vocalization
rates is one of its strengths (Alldredge et al. 20074). When
>4 intervals are used and heterogeneity is modeled as a 2-
point finite mixture, then it is theoretically possible to model
detection by maximum-likelihood estimation using varia-
tions of the standard models presented by Otis et al. (1978)
for closed-populations (Norris and Pollock 1996, Pledger
2000, Alldredge et al. 20074; see also Pollock et al. 1990,
Williams et al. 2002). Moreover, this makes model selection
via information-theoretic approaches possible (e.g., Akaike’s
Information Criterion [AIC] in Program MARK; White
and Burnham 1999, Burnham and Anderson 2002).

Alldredge et al. (20075) recently evaluated the time-of-
detection method with bird song in a realistic but simulated
field setting. The method performed reasonably well except
under conditions of heterogeneity with low detection
probabilities. However, this shortcoming is not unique to
the time-of-detection method (Alldredge et al. 20075).
Alldredge et al. (20074) encouraged other researchers to
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evaluate the method under various field conditions. In
particular, Alldredge et al. (20075) suggest the time-of-
detection method may be especially useful with birds that
have large territories, high singing rates, and low mobility to
minimize localization errors. During autumn, northern
bobwhite (Colinus virginianus) coveys have large territories,
exhibit periods of high singing rates under favorable
conditions, and do not move large distances during the
time of day when they are most vocal. Therefore, northern
bobwhite coveys may be particularly suited for sampling
with the time-of-detection method.

Another sampling method that accounts for total proba-
bility of detection and was developed specifically for
bobwhite coveys is the logistic regression method of
Wellendorf et al. (2004). This method is based on a logistic
regression model, which includes the following covariates:
number of calling coveys, wind speed, cloud cover, and
changes in barometric pressure prior to the count. This
model was created from a large sample (7 = 219) of
radiomarked coveys at a large spatial scale from locations
throughout the southeastern United States (farms in Tyrrell
County, NC; farms in Wilson County, NC; Ames
Plantation, TN; a hunting plantation in Leon County,
FL; and Tall Timbers Research Station, FL).

We used the same sample of a northern bobwhite covey
population to estimate covey detection probabilities using
both the time-of-detection method and the logistic
regression method. Our objective was to evaluate and
compare the time-of-detection with the logistic regression
method using empirical field data.

STUDY AREA

We conducted our study on 24 commercial hog farms in
Bladen, Columbus, Duplin, Pender, Sampson, Scotland,
and Robeson counties in the Coastal Plain of North
Carolina, USA. Each hog farm had >1 hog houses, which
were confinement areas for hog production, as well as >1
row-crop fields. Most farms were on a crop rotation of corn,
soybeans, and wheat, although a few farms occasionally grew
cotton on some fields. These farms were part of a larger
study of the effects of field-border shape and landscape
context on bobwhite and early succession songbirds. See
Riddle (2007) for additional details regarding experimental
design, farm descriptions, and overall project goals. Two of
the locations where Wellendorf et al. (2004) developed their
method (farms in Wilson and Tyrrell counties) also were
located in the Coastal Plain of North Carolina. The close
proximity and similar landscapes surrounding farms at these
2 locations to our own 24 study sites further facilitates our
ability to make a meaningful comparison of the time-of-
detection and logistic regression methods.

METHODS

We sampled autumn coveys on each farm during 2004—
2006. We conducted surveys from the first week of October
until the second week of November. In general, covey
calling behavior is less variable during these 6 weeks than

the rest of autumn in the southeastern United States
(Wellendorf et al. 2004). We sampled each farm once per
year from one fixed location, which was approximately
central to the field borders that we established on each farm
(Riddle 2007). Point counts began at 45 minutes before
sunrise and lasted 1 hour. We did not conduct surveys
during inclement weather. When a covey vocalized, we
recorded its location on a digital orthogonal quarter-
quadrangle (DOQQ) of the farm to avoid double-counting.
In another attempt to avoid double-counting, we considered
calls from within 30 m of each other to be from the same
covey (Wellendorf et al. 2004), although we rarely had to
rely on this rule in practice because of low covey densities at
our sites. At sunrise, we recorded wind speed (km/hr) with a
handheld anemometer and estimated cloud cover to the
nearest 10%. Later, we obtained hourly barometric pressure
readings (Hg) for the 6 hours prior to sunrise from the
nearest weather stations via the North Carolina State
Climate Office. We used these environmental data along
with the number of calling coveys from each count to
calculate a covey call-rate adjustment according to the

following equation adapted from Wellendorf et al. (2004):

Logit(p,,) = —0.228 + 0.348x; + 3.27xy — 0.002x;
~0.092x, 3)

where x; is number of coveys heard, x, is change in
barometric pressure for the 6 hours prior to sunrise, x3 is
cloud cover (%), and x4 is wind speed. The covey call-rate
adjustment is an estimate of detection probability (£,,). To
estimate abundance of coveys in an area, we divided number
of coveys heard by the adjustment to correct for environ-
mental variables and the number of calling coveys (Well-
endorf et al. 2004).

The time-of-detection method was performed simulta-
neously with the logistic regression method of Wellendorf et
al. (2004) by the same observers. We divided each 1-hour
point count into 4 15-minute intervals. We recorded covey
calling behavior in each interval separately by circling covey
locations on the DOQQs with 4 colors of ink that
corresponded to the 4 time intervals. Thus, we created a
4-digit detection history for each covey. For example, a
covey that called in intervals 1 and 3, but not in 2 or 4,
would have the following detection history: 1010.

For the logistic regression method, we obtained an average
covey call-rate adjustment for the entire study by averaging
all of the covey call-rate adjustments from each farm. For
the time-of-detection method, we entered detection histor-
ies from all farms and years into Program MARK and
compared the following models in a Huggins closed-capture
framework: My, M, My, Mgy, My, My, where the
subscripts 0, t, b, and h represent constant detection
probability, temporal variation in detection probability,
behavioral response in detection probability, and hetero-
geneity of detection probabilities among individual coveys,
respectively (Huggins 1989, 1991; see Williams et al. 2002).
All heterogeneity models were 2-point mixtures (Pledger
2000). We evaluated models using AIC, (AIC corrected for
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Table 1. Akaike’s Information Criterion (AIC)* for closed-capture models used with the time-of-detection method for sampling bobwhite coveys. We
collected all data from commercial hog farms, North Carolina, USA (2004-2006).

Model Model Estimable
Model® AIC, AAIC, AIC, wt likelihood parameters parameters Deviance
M, 177.079 0.00 0.947 1.000 4 4 416.523
My, 182.864 5.79 0.053 0.055 9 5 411.736
M, 226.340 49.26 0.000 0.000 2 2 469.896
Mg 228.388 51.31 0.000 0.000 3 3 469.896
M, 257.108 80.03 0.000 0.000 1 1 502.695
M, 259.139 82.06 0.000 0.000 2 2 502.695

* AIC,, AIC corrected for small sample size; AAIC,, difference in AIC, values between respective model and best model; AIC, wt, relative likelihood of the
respective model given the data and other models in the model set (Burnham and Anderson 2002).

" The model subscripts 0, t, b, and h represent constant detection probability, temporal variation in detection probability, behavioral response in detection
probability, and heterogeneity of detection probabilities among individual coveys, respectively (see Williams et al. 2002).

small sample size) and we chose the model with the largest
AIC, weight (relative likelihood of the respective model
given the data and other models in the model set) to
calculate a detection probability (Burnham and Anderson
2002). Combining detection histories from all years and
farms was necessary to perform this analysis because of small
sample sizes (no. of calling coveys on each farm in this case).
However, our work with summer bobwhite calls indicated
that combining the data in this way was reasonable (Riddle
2007).

To make the 2 estimates comparable, we had to convert
the probability of detection at least once in 15 minutes to
the probability of detection at least once in an hour for the
time-of-detection method using the following equation:

4

ﬁ/ZI_H(l _151')’ (4)

1
with

4 4
Var(p,) = [Var@)[[(1 = 5], (5)
I i
based on the Delta or Taylor Series method (Williams et al.
2002).

We used the detection estimate from the logistic
regression method (p,,) and the time-of-detection method
(p2) to test the following hypothesis: Ho: p,, = p, versus H,:
Pw 7 pr We used the normal Z-statistic for comparing 2
different proportions (e.g., Williams et al. 2002). A failure
to reject Hy implies that the time-of-detection method
produced a similar probability of detection to that of the
logistic regression method.

RESULTS

We could not use data from 4 covey counts in 2004 because
of logistical reasons. Of the other 68 covey count surveys
performed (7 =20 in 2004; » =24 in 2005; n =24 in 2006),
only 31 resulted in detections (i.e., we could use only 31 to
estimate the average covey call-rate adjustment for the
logistic regression method). The average covey call-rate
adjustment was 0.596 (SE = 0.020).

We detected 64 coveys and entered the detection histories

into Program MARK for use with the time-of-detection
method. The best model was M, (AIC. wt = 0.947; Table
1). The M, model assumes that every covey has an equal
probability of being detected within each sampling period,
but detection probability can vary among sampling periods
(Williams et al. 2002). My, was the only other model with
an AIC, weight > 0. However, only 5 of 9 parameters were
estimable for this model. If we removed My, from the group
of compared models because of lack of convergence, then M;
would have received all of the weight (i.e., AIC, wt = 1).
Detection estimates for each of the 4 time periods were p; =
0.236 (SE=0.060), 5, =0.371 (SE =0.084), p5=0.008 (SE
= 0.009), p4 = 0.034 (SE = 0.018). Therefore, average
detection probability, calculated by equation 4, was 0.540
(SE =0.086). The 2 estimates were not statistically different
[P(|z0.05/2] > 0.64) = 0.522].

DISCUSSION

The time-of-detection method provided an estimate of
detection probability that was similar to that of the logistic
regression method. Moreover, the selected model, M,, is
consistent with what is known about covey calling behavior.
Hamrick (2002) determined that coveys were most likely to
give their first call at 27.36 (SE = 0.21) minutes before
sunrise. Similarly, Wellendorf et al. (2004) reported coveys
are most likely to give their first call at 23.4 (SE = 0.5)
minutes before sunrise, with 87% of calls occurring prior to
15 minutes before sunrise, which corresponds with the
higher detection probability estimates for time intervals 1
and 2, which were 0.236 and 0.371, respectively. Detection
probabilities for periods 3 and 4 were only slightly >0.0,
which again is consistent with known covey calling behavior.
Extremely low probabilities of detecting coveys during
periods 3 and 4 limited our ability to detect heterogeneity, if
it was present. If we had focused the first 30 minutes of
sampling with multiple short intervals, it is possible we
could have fit model My,. Nevertheless, the time-of-
detection method allowed for the selection of a model that
was able to identify and capitalize on a key aspect of covey
behavior, as well as call-rate variability, and produce a
reliable detection estimate. This is the first evaluation of the
time-of-detection method with empirical field data. The
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time-of-detection method appears to perform very well in
the context of northern bobwhite covey sampling.

The time-of-detection method produced a similar detec-
tion estimate to the logistic regression method but did not
require the collection of additional data on wind speed,
cloud cover, or barometric pressure. In this regard, the time-
of-detection method is more convenient and less expensive.
Handheld anemometers can be costly and may range from
$74 to $245 (United States currency; J. D. Riddle, North
Carolina State University, personal observation). We were
able to obtain barometric pressure readings from the North
Carolina State Climate Office without charge because of our
affiliation with North Carolina State University. However,
if we had been required to pay for these data, the cost would
have been $25/request or $25/hour of data retrieval (United
States currency). The time-of-detection method also allows
for study-specific estimation of detection probability, which
makes it sensitive to unidentified or unmeasured factors that
could influence covey call variability. Additional factors that
could influence covey call variability or detection proba-
bilities could easily be included as covariates in Program
MARK. However, the time-of-detection method will not
perform well when only a few coveys are detected in a study.

The primary advantage of the logistic regression method is
that it allows for adjustments on a count-by-count basis.
Therefore, it is especially useful for smaller scale studies with
few replicates, or with larger scale studies on sites with few
coveys or logistical constraints that prohibit repeated visits
within a season to increase precision (e.g., Riddle 2007).
The logistic regression method was developed on 5 study
sites located across the southeastern United States and used
similarities in covey call rates across sites (Wellendorf et al.
2004). Wellendorf et al. (2004) were interested in making
sampling recommendations that most researchers could use,
or improve upon, at most sites. Nevertheless, there are many
site-specific factors, such as landscape differences and timing
of recruitment and covey formation, which could be
important and were not included in their model (Wellendorf
et al. 2004).

The logistic regression method and the time-of-detection
method share several assumptions. Both assume that the
population of coveys within the sampled area is closed
during the point count, which is likely to hold in most cases.
For example, it is possible that entire coveys (especially small
ones) are depredated within the course of one hour at any
particular site, but we believe this is unlikely to happen very
often. Both methods assume that individual coveys are
accurately identified (i.e., no double-counting of single
coveys and no mistaking multiple coveys as a single covey).
Using DOQQs to map covey locations and the 30-m rule
help to avoid double-counting. However, the ability of
observers to determine if birds giving covey calls are within
30 m of one another probably will decrease with increasing
distance from the observer, which is not a major concern
when covey densities are moderate to low (as in our study)
but could be problematic in areas of high covey density
(Roseberry 1982, DeMaso et al. 1992). The time-of-

detection method has additional assumptions associated
with the specific model(s) that best fits the data. M, was the
best model for our data, and this adds the additional
assumption that each covey has an equal detection
probability within each sampling interval. This assumption
might be violated if, for example, call rates of some coveys
were elevated within a particular sampling interval because
they had been disturbed and scattered during the night or if
covey density differed dramatically at different survey
locations within a study area because of density-dependent
behavior in calling rates (Wellendorf et al. 2004). However,
Wellendorf et al. (2004) estimated that nocturnal disturb-
ance had not occurred for >95% of the coveys surveyed. In
future studies, more intervals of shorter length (especially
during the first 30 min of sampling) might allow one to
account for this as a form of heterogeneity. Heterogeneity
models could also account for the effect of differences in
covey densities on covey calling behavior at different survey
locations as well. The logistic regression method has the
additional assumption that wind speed, cloud cover, and
barometric pressure changes are recorded accurately. The
logistic regression method was developed at specific sites
from an observed range of values used to estimate each of
the betas (regression coeff.) used in equation 3. Technically,
use of the logistic regression method at sites and under
conditions outside the range of those from which it was
developed is a form of extrapolation, which may not be as
large of a concern in situations where the method is used in
close proximity to where it was developed (e.g., this study).
However, it could be more problematic when used at
locations far from where it was developed. Similarly, another
potential issue with the logistic regression method is that
adjustments made to individual counts are not totally
independent because the estimated betas in the logistic
regression used to adjust each count are based on the same
prior data set of Wellendorf et al. (2004).

We acknowledge that other studies have suggested covey
call surveys provide poor density estimates when compared
to line-transect methods that flush coveys (DeMaso et al.
1992, Rusk et al. 2007). Line-transect methods typically
perform best when coveys are at high densities in relatively
homogeneous habitat, such as some rangelands in Texas,
USA (Guthery 1998). However, these conditions are not
typical for most bobwhite populations. Line-transects may
perform poorly when densities are low and habitats are
heterogeneous (e.g., interspersed fields and forests; Kuvlesky
et al. 1989). Furthermore, on 2 sites with a variety of
woodland, grassland, shrubland, and cropland habitats,
Janvrin et al. (1991) determined that some northern
bobwhite did not flush, even when observers stepped over
them, and that 40% of coveys moved away from observers
upon approach. Thus, 2 major assumptions of line-transect
sampling were violated: 1) detection probability on the line
is 1.0 and 2) birds do not move towards or away from an
observer prior to detection (Guthery 1988). DeMaso et al.
(1992) suggested that the poor performance of covey call

methods as an index of covey density in their study may have
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resulted in part from violations of the assumptions that the
proportion of coveys calling is constant over space and time.
Indeed, Wellendorf et al. (2004) demonstrated that covey
calling behavior is not constant over biweekly periods or
over space (i.e., because covey calling behavior is density-
dependent and each survey location may have different
densities). At a smaller temporal scale, our results indicate
that detection probabilities changed significantly over a
short amount of time (i.e., over the course of an hr).
Compared to traditional covey call surveys, surveys con-
ducted with the time-of-detection method or the logistic
regression method may produce density estimates that are
more comparable to estimates from line-transect methods in
environments where line-transect methods are appropriate.
However, line-transect methods, or other methods that rely
on distance data alone, will still be biased by their lack of
ability to account for both components (availability and
detection given availability) of the detection process.

Management Implications

Attempts to evaluate the effectiveness of bobwhite manage-
ment activities only will be as reliable as the survey methods
used in the evaluations. We recommend that researchers
simultaneously use both the time-of-detection and logistic
regression methods when possible. The time-of-detection
method adds little extra effort to the logistic regression
method. It would be informative if other researchers were
able to assess the performance of both methods for covey
counts at other study sites to determine if our results are
repeatable. When it is not possible to use both methods, we
recommend the logistic regression method for smaller scale
studies where replication or multiple independent counts
may not be feasible or in situations where number of
detections is likely to be low. We recommend the time-of-
detection method for larger scale studies where number of
detections may be high and gathering wind speed and
climatic data may be prohibitive because of logistics or costs.
However, even in this case, it still may be informative to
double-sample with the logistic regression method on a
subset of points to allow for comparisons where possible
(Bart and Earnst 2002). We also note that both methods

could be combined intuitively within a Bayesian framework.
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