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Abstract Herpetofauna responses to forest management and early successional habitats are 
influenced by species-specific adaptations to historical disturbance regimes.  It can take decades 
for woodland salamander diversity to recover after heavy overstory removal for even-aged forest 
regeneration or hot fires that yield higher light, drier microclimates, and reduced leaf litter cover, 
but some frog and toad species may tolerate or even increase after disturbances.  In particular, 
disturbances that retain some canopy cover, such as selection harvests or low intensity burns, can 
mitigate effects on terrestrial salamanders.  The same early successional conditions that are 
detrimental to salamanders can benefit many reptile species, such as fence lizards (Sceloporus 

undulatus).  Maintaining stand age diversity across central hardwood forest landscapes, 
including retention of mature forest communities, should provide habitats for both early 
successional wildlife and mature forest species.   

 
11.1 Relevant environmental changes following disturbance 

 
The extent and frequency of historical disturbances in central hardwood forests varied 

widely depending on slope position, aspect, stand age, and stand composition (White et al., 
Chapter 3).  Gap phase disturbances following wind events, ice storms, and insect outbreaks 
were more common than the large-scale changes that followed hurricanes and wildfires in other 
regions of North America (White et al., Chapter 3).  Amphibian and reptile species associated 
with mature hardwood forest presumably were common across much of the landscape, whereas 
those associated with early succession habitats were much more variable because they depended 
upon infrequent natural disturbance to create ephemeral patches of suitable habitat (Greenberg 
2001). 

Natural and anthropogenic disturbances that create young forest by removing or reducing 
canopy cover can greatly alter the microclimate at or just below the soil surface, where most 
amphibian and reptile species reside (but see Brooks and Kyker-Snowman 2008).  Following 
overstory removal, light penetration increases, raising soil temperatures and evaporation rates 
and decreasing litter depth and moisture until it is replenished by leaf-fall and shade from the 
recovering vegetation (Greenberg et al., Chapter 8).  Fire also can consume leaf litter and reduce 
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leaf-fall input levels (Petranka et al. 1994).  Increased light levels near the ground promote 
development of a grass and forb layer and establishment of shrubs or regenerating trees (Russell 
et al. 2004).  These environmental changes can alter herpetofaunal movement patterns, survival 
rates, and prey abundance (Moseley et al. 2004).   

Down wood or coarse woody debris (CWD) is used by many reptile and amphibian 
species for mating sites, egg-laying, feeding, and thermoregulation (Whiles and Grubaugh 1996).  
Down wood volume typically follows a U-shaped chrono-sequence in central hardwood forests, 
with highest levels in the 5 to 10 years following disturbance (i.e., downed trees following 
windthrow or logging slash following timber harvest) and again during late-succession or old 
growth stages when aging trees senesce (Gore and Patterson 1986).  However, larger, more 
decayed logs may be more abundant in mature or old growth hardwood forest (Petranka et al. 
1994).  Webster and Jenkens (2005) reported that primary forests in the Southern Appalachians 
contained more large-diameter, highly decayed CWD compared to forests subjected to 
anthropogenic disturbances.  Furthermore, among sites with similar disturbance histories, higher 
levels of CWD were associated with mesic conditions and higher elevations (Webster and 
Jenkens 2005, Keyser, Chapter 15).  Therefore, reptile and amphibian species that use down 
wood heavily may be most abundant early (e.g., some reptiles) or late (e.g., salamanders) in 
stand development.  However, the degree to which salamanders and other amphibians 
specifically rely on CWD is likely influenced by the availability of other surface cover.  For 
example, salamanders may use cover objects less in undisturbed stands with intact leaf litter and 
vegetation cover compared to stands where leaf litter and vegetative cover is reduced from 
prescribed burning and herbivory (Ford et al. 2010).   

Machinery associated with timber harvest operations can cause soil compaction or 
erosion.  Disturbances of the subterranean environment, as occurs with most types of mechanical 
site preparation, can cause direct mortality or degrade habitat conditions for fossorial snakes and 
other species that spend portions of their life cycle below ground (Russell et al. 2004, Todd and 
Andrews 2008).  However, mechanical site preparation and other forms of intensive forest 
management are uncommon in the Central Hardwood Region as compared to other regions such 
as the southeastern Coastal Plain (e.g., Russell et al. 2002).   

Amphibians and reptiles often are generically lumped together as “herpetofauna,” but in 
fact are as phylogenetically distinct from one another as are mammals and birds.  Amphibians 
(class Amphibia) have permeable, moist skin that is used for respiration and increases 
vulnerability to desiccation.  Amphibians have a two-stage or “biphasic” life cycle that includes 
morphologically distinct larval and adult stages.  Most require water for egg deposition and 
development of larvae, which eventually metamorphose into adults that can be largely terrestrial 
(Duellman and Trueb 1986).  Amphibian taxa vary considerably in their vulnerability to 
desiccation.  For example, some frogs and toads can tolerate higher temperatures (Stebbins and 
Cohen 1995) and can store and reabsorb larger amounts of water in their bladders than 
salamanders (Zug 1993).  Some salamanders are lungless, and some are completely terrestrial 
(deMaynadier and Hunter 1995).  Many amphibian species have small home ranges (Duellman 
and Trueb 1986) and poor dispersal capabilities (Sinsch 1990).  Conversely, most reptiles (class 
Reptilia) require warm temperatures (associated with higher light levels) for egg incubation and 
successful development of hatchlings (Deeming and Ferguson 1991).  Reptiles have dry scaly 
skin that protects them from desiccation.  Clearly, response to disturbance and early successional 
habitats might be expected to differ between the two taxonomic classes, and among species 
within them.  Within Amphibia, salamanders tend to decline following disturbances that reduce 
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canopy cover because of their increased risk of desiccation, whereas some toad and frog species 
may tolerate higher temperatures and lower moisture in early successional habitats (Russell et al. 
2004).  Many reptile species increase in recently disturbed areas, likely because of improved 
opportunity for thermoregulation and foraging (Russell et al. 2004).   
 

11.2 Amphibian and reptile response to timber harvest 
11.2.1 Amphibian response 

Heavy overstory removal for forest regeneration treatments (e.g., clearcut or shelterwood 
regeneration harvests) can adversely affect amphibians, especially terrestrial salamanders (Pough 
et al. 1987, Petranka et al. 1993, 1994, deMaynadier and Hunter 1995, Ash 1997, Harpole and 
Haas 1999, Reichenbach and Sattler 2007).  Canopy removal results in higher light levels, a 
warmer, drier microclimate, and reduced leaf litter cover, which could cause salamanders to 
desiccate (deMaynadier and Hunter 1995, Renken 2006).  In the Southern Appalachians, 
terrestrial salamander abundance declines following clearcutting (Ash 1988, Ash 1997, Petranka 
et al. 1993, Petranka et al. 1994; but see Adams et al. 1996).   

There has been considerable debate about the time that it takes salamander populations to 
recover to pre-disturbance levels following canopy removal (Ash and Pollock 1999, Petranka 
1999).  Estimates range from approximately 20 years to more than 100 years (Table 11.1).  
Discrepancies in documented recovery periods likely are related to differences in study designs, 
salamander communities, and site and landscape characteristics.  But, research suggests that 
post-disturbance recovery of salamander abundance is closely correlated with litter layer 
recovery (Pough et al. 1987, Ash 1997, Crawford and Semlitsch 2008a).  Longer recovery 
periods may be required on drier aspects and ridge tops than on mesic sites where soil moisture 
remains relatively high even after disturbance (Harper and Guynn 1999, Petranka 1999).  
However, the former sites generally are poorer sites for woodland salamanders.  Disturbances 
that retain heavy canopy cover such as midstory removal, selection harvest, firewood cutting, 
thinning, and heavy browsing by white-tailed deer (Odocoileus virginianus) are less likely to 
affect salamander abundance (Pough et al. 1987, Adams et al. 1996, Messere and Ducey 1998, 
Brooks 1999, Ford et al. 2000, Harpole and Haas 1999, Moseley et al. 2003, Knapp et al. 2003, 
Homyack and Haas 2009, Semlitsch et al. 2009).  Yet, salamander density may decline following 
partial canopy reduction (e.g., Duguay and Wood 2002), and reductions in canopy cover by as 
little as 41% can cause local declines in salamander abundance (Knapp et al. 2003).   

The exact mechanisms for the disappearance of terrestrial salamanders from disturbed 
sites remain in question.  Semlitsch et al. (2008) proposed three hypotheses to explain amphibian 
declines following timber harvest: (1) retreat to underground refugia; (2) mortality from 
desiccation or starvation; and (3) evacuation to adjacent forest.  Although a percentage of pond-
breeding mole salamanders (Ambystoma spp.) may disperse out of disturbed environments, it is 
not known how they fare once they reach adjacent forest (Semlitsch et al. 2008).  Mortality is the 
most likely cause of declines in terrestrial salamander density following clearcutting because 
plethodontid salamanders primarily are surface feeders and individuals eventually would starve 
unless they came to the surface where they could desiccate.  Adult plethodontid salamanders lack 
lungs and depend on cutaneous respiration for gas exchange.  Because moist skin is necessary to 
facilitate respiration, salamanders are most active where the forest floor is moist or at night when 
relative humidity is highest (Petranka et al. 1993).  Salamander desiccation results from reduced 
leaf litter cover and depth, and higher ground temperatures following clearcutting, rather than 
changes in soil moisture (Pough et al. 1987, Ash 1997, Rothermel and Luhring 2005).  
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Rothermel and Luhring (2005) showed that salamander survival was 100% in uncut forest, but 
individuals could survive in clearcuts only by gaining access to protective underground burrows.  
Some researchers have speculated that salamanders are unlikely to evacuate to adjacent forested 
areas that already are saturated with territorial adults (e.g., Petranka 1999).  For example, 
Bartman et al. (2001) did not detect any post-harvest emigration of plethodontid salamanders 
from sites that had been subjected to shelterwood harvests in western North Carolina.  
Interestingly, Ash (1997) speculated that adult salamanders disperse into early successional 
habitats such as clearcuts to avoid competition from smaller or immature salamanders that are 
restricted to mature forests with abundant, moist litter. 

Juvenile frogs and salamanders typically exhibit higher rates of mortality than adults 
following canopy removal because their high surface:volume ratios make them prone to 
desiccation (Jaeger 1980, Ash et al. 2003, Marsh and Goicochea 2003).  Additionally, the high 
adult:juvenile ratio of salamanders in clearcuts indicates low reproduction by adults or higher 
rates of mortality in juveniles (Ash 1997, Ash et al. 2003).  Adults of some salamander species 
are better adapted to withstand the hot, dry conditions of recently disturbed sites or more exposed 
ridge top environments (Ash 1997, Ash et al. 2003, Ford et al. 2010).  For example, Ford et al. 
(2010) reported that larger-bodied slimy salamanders (Plethodon glutinosis) were less affected 
by leaf litter reduction following fire than smaller-bodied red-backed salamanders (P. cinereus) 
or mountain dusky salamanders (Desmognathus ocropheaus).  Riedel et al. (2008) documented 
high densities of both adult and juvenile eastern red-backed salamanders within former  
deciduous forests of West Virginia that had been converted to silvopastures, traditional pastures, 
and ungrazed meadows, indicating that this species may be more resilient to the creation of early 
successional habitats than previously thought.  Interestingly, the physiological condition and sex 
ratios of salamanders within these open, early successional habitats were similar to those of 
salamanders in adjacent mature forest, although adults were significantly more abundant than 
juveniles (Riedel 2006).  Riedel et al. (2008) suggested that the presence of artificial cover in 
these open, early successional habitats, in combination with moisture trapped by dense 
herbaceous vegetation, facilitated woodland salamander persistence.  In addition, Marsh et al. 
(2004) showed that dispersal of P. cinereus was not limited by the presence of forest cover, and 
suggested that this species may be relatively insensitive to the creation of small, intervening, 
open habitats within deciduous forests such as fields, power line corridors, and even small 
residential areas.  Accordingly, at least some species of woodland salamanders may tolerate the 
creation of small patches of early successional habitats within mature deciduous forests (Marsh 
et al. 2004, Riedel et al. 2008, Moseley et al. 2009), yet others can be highly sensitive to forest 
road edges (Semlitsch et al. 2007).  However, individuals forced to forage in areas with reduced 
cover may be more exposed to predation (Moseley et al. 2004). 

Timber harvest can affect stream-breeding salamanders by eliminating terrestrial habitat 
for adults and by degrading aquatic habitats required for larval development (Perkins and Hunter 
2006, Crawford and Semlitsch 2008a, Peterman and Semlitsch 2009).  Adult stream-breeding 
salamanders (e.g., Desmognathus and Eurycea) use terrestrial habitats some distance away from 
streams for foraging and overwintering habitat (Ashton and Ashton 1978, Crawford and 
Semlitsch 2007).  Similar to terrestrial salamanders, adult stream salamander (e.g., Blue Ridge 
two-lined salamander [E. wilderae]) abundance may be reduced following timber harvest 
because of decrease in leaf litter depth, soil moisture, and overstory cover (Crawford and 
Semlitsch 2008a, b).  Increased water temperatures and reduced litter input following canopy 
removal and sedimentation from logging roads (Vose and Ford Chapter 14) are detrimental to 



5 
 

larval salamanders that occur in the streams (Semlitsch 2000, Peterman and Semlitsch 2009).  
Stream sedimentation can fill interstitial spaces between rocks at the stream bottom, thus 
potentially reducing abundance of salamanders that use the spaces for cover, such as Eurycea 
and Desmognathus species (Lowe and Bolger 2002, Miller et al. 2007, Moseley et al. 2008, 
Peterman and Semlitsch 2009).  However, retention of an uncut riparian buffer may mitigate the 
effects of clearcut harvests on larval salamanders (Peterman and Semlitsch 2009). 

Frogs and toads tend to be more tolerant of canopy removal and elevated ground 
temperatures than salamanders (Gibbs 1998, Ross et al. 2000, Russell et al. 2004, Patrick et al. 
2006).  Additionally, tadpoles of some frog species may develop faster or survive better in ponds 
within clearcuts (Semlitsch et al. 2009, Felix et al. 2010).  Some anuran species likely are 
attracted to the higher coverage of herbaceous vegetation around ponds in open environments 
(Felix et al. 2010).  Response to canopy removal around breeding ponds differs among anuran 
species.  Species associated with open habitats, such as gray treefrogs (Hyla versicolor), deposit 
more eggs in ponds in areas with heavy canopy removal.  In contrast, species that require cooler 
water temperatures, such as mountain chorus frogs (Pseudacris brachyphona) and spotted 
salamanders (Ambystoma maculatum) only deposit eggs where at least 75% of the canopy is 
retained (Semlitsch et al. 2009, Felix et al. 2010).  However, gray treefrogs oviposited more eggs 
in ponds in clearcuts close to forest edge than in ponds 50 m into clearcuts (Hocking and 
Semlitsch 2007), because adult treefrogs require mature trees for foraging (Johnson et al. 2007, 
2008).  Adult wood frogs (Rana sylvatica) were able to travel through clearcuts when dispersing 
between breeding ponds and non-breeding habitats in mature forest, but their rate of travel 
increased in response to the degraded micro-climatic conditions (Rittenhouse and Semlitsch 
2009).  Some anurans, especially juveniles, may experience increased predation or desiccation 
risks following timber harvests (Patrick et al. 2006, Rittenhouse and Semlitsch 2009, Rittenhouse 
et al. 2009).  Species response to the creation of young forest may vary regionally.  For example, 
adult wood frogs did not use hot, dry clearcuts in Missouri but did use moist areas within 
clearcuts as non-breeding habitat in Maine (Patrick et al. 2006, Rittenhouse and Semlitsch 2009).   

 
11.2.2 Reptile response 

 
The same conditions following timber harvest that may be detrimental to amphibians 

appear to benefit many reptiles (Greenberg 2002, Adams et al. 1996).  Most reptile species 
require the warm temperatures associated with higher light levels for egg incubation and 
successful development of hatchlings (Goin and Goin 1971, Deeming and Ferguson 1991).  The 
hotter, drier microclimate in open, disturbed sites also may facilitate movement and 
thermoregulation for many reptile species (Greenberg 2001).  Lizards, particularly fence lizards 
(Sceloporus undulatus), generally increase following canopy reduction (McLeod and Gates 
1998, Greenberg 2001, Renken et al. 2004).  Following timber harvests, Renken et al. (2004) 
determined that juvenile abundance of S. undulatus was twice as high as that of adults, 
suggesting that the lizards experienced an immediate boost in reproductive rates in disturbed 
sites or that the recently disturbed sites were colonized primarily by juveniles.  In predominantly 
forested landscapes in Pennsylvania, snake abundance and richness increased with decreasing 
tree basal area (Ross et al. 2000).   

However, there is evidence that some forest-dwelling reptile species may decline 
following timber harvest (Russell et al. 2004).  In Coastal Plain pine forests, abundance of 
several small-bodied leaf litter snake species was lower in clearcuts than unharvested and 
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thinned pine stands, but snake abundance was highest in thinned stands where habitat 
heterogeneity and presumably prey abundance was highest (Todd and Andrews 2008).  In 
contrast with the management of deciduous forests, the intensive mechanical site preparation 
associated with Coastal Plain pine management not only removes surface cover used by small-
bodied snakes but also likely results in direct destruction of nest sites (Russell et al. 2002). 

 
11.3 Response to prescribed fire 

 
Over the past 500 years, fire was a common forest disturbance across much of the Central 

Hardwood Region (Spetich et al. Chapter 4).  Fire effects on vegetation structure likely varied 
with fire intensity and frequency, which in turn was influenced by topography, weather 
conditions, and population distribution of Native Americans or European settlers who 
intentionally burned to promote forage for game or livestock (Spetich et al. Chapter 4).  Hot fires 
certainly reduced leaf litter and often killed overstory trees, creating patchy, heterogeneous early 
successional conditions with some snags and trees remaining.  In contrast, cool, patchy burns 
likely had minimal impact on overstory trees or leaf litter depth and cover, but reduced shrub 
cover or killed midstory trees where it burned.  In ecosystems such as longleaf pine-wiregrass or 
sand pine-scrub where lightning-ignited fires created and maintained “fire climax” habitat 
conditions, many species of reptiles and amphibians are behaviorally adapted to survive wildfire 
or prescribed burns, and require fire maintained habitat conditions (Russell et al. 1999; 
Greenberg 2002).  Less is known about fire effects on herpetofauna of upland hardwood forest, 
where the majority of fires were historically human-caused.  Fire is thought to have little direct 
effect on amphibians and reptiles, but the likelihood of individual mortality during a fire depends 
on the species’ behavior, fire intensity, and season of burn (Russell et al. 1999).  Negative 
indirect impacts of prescribed fire likely are most severe for species that require leaf litter or 
other forest debris that is consumed (Russell et al. 1999).   

Relatively few studies have addressed fire effects on herpetofauna in hardwood forests 
(Russell et al. 2004, Renken 2006).  Several studies have reported no difference between 
amphibian populations on prescribed burned sites and unburned controls (Ford et al. 1999, Floyd 
et al. 2001, Moseley et al. 2003, Keyser et al. 2004, Greenberg and Waldrop 2008, Ford et al. 
2010, Matthews et al. 2010).  Others have indicated that toad abundance may increase following 
fire (Kirkland et al. 1996, Greenberg and Waldrop 2008).  Conversely, intense prescribed fires 
that cause immediate or delayed reduction in canopy cover following overstory tree mortality 
can produce micro-habitat changes near the forest floor (e.g., reduced leaf litter cover and depth, 
more sunlight, higher ground temperatures) that negatively impact salamander populations 
(Matthews et al. 2010). 

Reptiles, lizards in particular, may increase after prescribed burns, especially after hot 
fires that reduce canopy cover (Moseley et al. 2003, Keyser et al. 2004; Greenberg and Waldrop 
2008, Matthews et al. 2010).  Litter removal, midstory and canopy reduction, and higher ground 
temperatures following intense fires likely create thermoregulatory conditions favorable for 
lizards (Moseley et al. 2003).  Overstory mortality following intense fires also generates down 
wood that may be used as basking sites by lizards and large-bodied snakes (Matthews et al. 
2010).  However, it is not known whether these same changes negatively affect small-bodied 
fossorial snakes that depend on leaf litter. 

Prescribed fire effects on wetland and stream-associated amphibians in central hardwood 
forests have not been well studied (Renken 2006).  Intense fires that kill trees and reduce canopy 
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cover in the uplands adjacent to streams or amphibian breeding ponds could result in higher 
water temperatures increased sedimentation rates, or runoff of ash that changes water pH, 
potentially killing amphibian adults, eggs, or larvae (Renken 2006).  However, other temperature 
and sediment-sensitive aquatic vertebrates in the Appalachians, such as brook trout (Salvelinus 

fontinalis), have been reported to respond positively to adjacent forest disturbances, presumably 
in response to greater abundance of macroinvertebrate prey after partial canopy removal (Nislow 
and Lowe 2006).   In short, more research is needed on the effects of fire and other forest 
disturbances on aquatic and riparian reptiles and amphibians in central hardwood forests. 
 
11.4 Mitigation strategies 

 
11.4.1 Stream and wetland buffers 

 
Riparian buffers between upland timber harvests and adjacent streams or wetlands have 

been recommended to mitigate impacts on sensitive amphibian species (Semlitsch 2000).  
Buffers shade water, contribute leaf litter to streams, filter sediment, provide terrestrial habitats 
for biphasic amphibians and reptiles, and possibly provide refuge for individuals dispersing out 
of harvested areas (Mitchell et al. 1997, Semlitsch 2000, Perkins and Hunter 2006).  Crawford 
and Semlitsch (2007) recommended a 92-m buffer adjacent to Southern Appalachian streams to 
provide core habitat free of edge effects for the widest ranging stream salamander species.  
Effects of timber harvest on sensitive amphibian species may extend at least 25 m into adjacent 
mature forest, possibly because of the reduced canopy and litter cover along edges created by 
timber harvests (deMaynadier and Hunter 1998).  To provide the core biphasic habitat needs, 
Semlitsch and Bodie (2003) recommended 159-290 m buffers for amphibians and 127-289 m 
buffers for reptiles around wetlands and streams.  However, it has been speculated that narrower 
30-m buffers may provide adequate protection to larval salamanders (Peterman and Semlitsch 
2009).  Alternatively, a two-tiered approach has been recommended to protect aquatic 
herpetofauna, with unharvested 10-25 m buffers around streams surrounded by a wider partial 
harvest zone (deMaynadier and Hunter 1995).  To date, however, the actual community and 
demographic responses of stream-dwelling herpetofauna to adjacent forest disturbance remain 
poorly characterized.  Therefore, few data are available to evaluate the efficacy of specific buffer 
widths recommended to protect herpetofauna within deciduous forests of the Central Hardwood 
Region.  

 
11.4.2 Coarse woody debris retention 

 
Salamander populations are positively linked to CWD abundance, especially on drier 

sites and where leaf litter cover is sparse, so retention of CWD may help mitigate the effects of 
disturbance on amphibians and provide critical habitat or refuge to a number of reptile species 
(Pough et al. 1987, Petranka et al. 1994, Brooks 1999, Herbeck and Larsen 1999, Russell et al. 
2004).  Retention of CWD and brush piles in clearcuts may decrease the proportion of 
salamanders leaving clearcuts and could contribute to increased juvenile amphibian survival by 
providing cool, moist refugia (Patrick et al. 2006, Rittenhouse et al. 2008, Semlitsch et al. 2008).  
Todd and Andrews (2008) captured more small snakes in clearcuts with CWD retention than in 
clearcuts without retention.  However, CWD retention appears to provide only short-term 
benefits to sensitive amphibians by providing refuge from desiccating conditions immediately 
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post-harvest, and may not prevent declines  (Mosely et al. 2004, Semlitsch et al. 2009).  Coarse 
woody debris diameter and degree of decay is generally much lower, and thus not used by 
salamanders, in recently harvested sites than in old growth stands (Herbeck and Larsen 1999).  
Additionally, several studies failed to show benefits of CWD retention for amphibians 
(Greenberg 2001, Ford et al. 2002a, Rothermel and Luhring 2005, Rittenhouse and Semlitsch 
2009).  Similarly, higher abundance of lizards and snakes in small canopy gaps was not related to 
CWD abundance (Greenberg 2001).    

 
11.4.3 Overstory retention 

 
Small forest openings such as group selection harvests and wind-created downburst gaps 

with multiple treefalls, or partial harvests that retain a large percentage of the overstory, can 
mitigate the negative effects of timber harvest on amphibians by maintaining shade and leaf litter 
input and providing refuge and recolonization sources (Pough et al. 1987, Ford et al. 2000, 
Greenberg 2001, Lowe and Bolger 2002, Homyack and Haas 2009).  Overstory retention 
adjacent to wetlands can be critical to maintaining connectivity between aquatic reproduction 
sites and other habitat features required by amphibians, as many, especially salamanders, avoid 
timber harvests when emigrating from breeding pools (Todd et al. 2009).  In Maine, partial 
harvests adjacent to headwater streams had less effect on amphibian communities than clearcuts 
(Perkins and Hunter 2006).  Increased growth of herbaceous plants or shrubs near the forest floor 
following small overstory reductions might improve habitat conditions for some herpetofaunal 
species and mitigate changes to the microclimate that are problematic for disturbance-sensitive 
species such as salamanders (Ross et al. 2000, Semlitsch et al. 2009).  Retention of at least 50% 
of the overstory is recommended to minimize negative effects on amphibian populations (Ross et 
al. 2000, Semlitsch et al. 2009).  However, as little as 41% reduction in the overstory may result 
in declines in the abundance of plethodontid woodland salamanders similar to clearcuts (Knapp 
et al. 2003).  Group-selection harvests require more frequent stand entries across a larger land 
base to extract the same amount of wood fiber as a clearcut (Homyack and Haas 2009). We 
suggest that the relationships between partial overstory reduction and response by amphibian 
populations require more study.   

 
11.4.4 Small stand sizes and longer rotations 

 
Smaller harvest units may help to minimize the deleterious effects of timber harvest on 

wood frogs and other sensitive amphibians, especially juveniles (Patrick et al. 2006, Rittenhouse 
and Semlitsch 2009).  The distance that dispersing individuals must traverse across smaller 
clearcuts could lessen the risks of desiccation and predation.  Additionally, small timber harvests 
may facilitate evacuation by individuals from harvested areas into adjacent uncut areas 
(Semlitsch et al. 2008).  Ford et al. (2002a) demonstrated that the amount of cove hardwood 
habitat surrounding harvested patches is an important determinant of woodland salamander 
population response to the disturbance, so designated no-harvest areas on the landscape could 
serve as sources for repopulating nearby harvest units (Petranka et al. 2004).  Additionally, 
breeding pools in small timber harvest openings could provide ideal locations for rapid larval 
development for larvae of some disturbance-adapted or early successional amphibians and be in 
close proximity to the mature forest required by adults (Barry et al. 2008, Semlitsch et al. 2009).  
Further, small harvest openings (< 2 ha) provide habitat for lizards and other reptiles (Greenberg 
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2001).  Similar to group-selection harvests, however, harvest of the same timber volume in 
smaller units requires more roads, potentially leading to sediment loading in streams and 
disturbance to a larger percentage of the land base.   

Increasing the rotation length of managed forest stands would ensure that a portion of the 
landscape contained large trees, high accumulations of large diameter CWD, and other structural 
characteristics associated with late-seral forest (Herbeck and Larsen 1999).  Alternatively, 
employing forest management practices that retain and enhance structural components of 
habitats important for herpetofauna (e.g., retention of CWD, green and legacy tree retention, 
selection harvest systems) may provide suitable conditions for these species while contributing to 
economic and other resource objectives.  Additionally, management practices that mimic 
historical disturbance regimes may be used to promote a diversity of cover types across the 
landscape, which in turn would provide habitat for a variety of reptiles and amphibians. 
Examples of historical disturbance conditions include more frequent prescribed fires on xeric 
ridge tops in the Southern Appalachians and less disturbance on moist, north-facing slopes and 
ravines.   
 
11.5 Research challenges 

 
More focus on reptile response to disturbance. Reptile response to disturbance from forest 
management has been studied much less than amphibian response.  For example, a database 
search of journal articles using the keywords salamander and clearcut generated 64 citations; 
conversely, a search using the same database with the keyword lizard in place of salamander 
generated three citations and replacement of salamander with snake generated one citation.  We 
can only speculate that the cause for the discrepancy is due in large part to the direction of 
response by amphibians and reptiles in previous studies.  Because amphibians, especially 
woodland plethodontid salamanders, typically decline locally following disturbance, they have 
received the majority of research emphasis in the past two decades.  However, some reptile 
species such as small fossorial snakes similarly show negative response; other reptile species, 
such as fence lizards increase in abundance following disturbance.   We suggest that there may 
be a bias in the scientific literature attributable to a greater attraction by scientists to studying 
taxa that respond negatively to forest management, and journals to accept manuscripts that report 
significant results.   
 
Longer study durations. Deleterious effects of canopy reduction on salamanders and other 
amphibians may be delayed for up to five years after timber harvest (Ash 1988, Reichenbach and 
Sattler 2007, Homyack and Haas 2009).  Some species may experience a greater time lag in the 
demographic changes that occur following disturbance (Homyack and Haas 2009).  Greenberg 
and Waldrop (2008) reported that a single prescribed burn that killed trees and reduced canopy 
cover did not reduce the relative abundance of terrestrial salamanders (Plethodon spp.), but 
salamander abundance was lower in the same treatment units compared to control plots after a 
second burn 5 years later in the same study area (Matthews et al. 2010).  The delayed changes in 
salamander abundance following the fuel reduction treatments could either have been a result of 
additive effects of the treatments on environmental conditions, or the result of delayed changes 
in demographic parameters (Matthews et al. 2010).  Lastly, long-term studies also should address 
the effects of forest management on population demography at large spatial scales (Homyack 
and Haas 2009). 
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More accurate assessment of detection bias. Most reptile and amphibian studies assume that 
sampled individuals represent the entire population (deMaynadier and Hunter 1995).  This 
assumption is unlikely for salamanders because surface populations represent only a small 
percentage of the total population (Bailey et al. 2004a).  Additionally, detection probabilities 
often differ among treatment areas because of variable habitat conditions, which in turn could 
influence abundance estimates for reptile and amphibian populations (Bailey et al. 2004b).  For 
example, reduction of leaf litter from prescribed fire or timber harvest could cause individual 
salamanders to move more frequently and for longer periods (Mosely et al. 2004), or cause them 
to aggregate under coverboards being used to assess population response to burning or other 
disturbances (Ford et al. 2010).  Few studies of reptile and amphibian response to forest 
management have accounted for detection bias (except see Bailey et al. 2004b, Ford et al. 2010).  
Mark-recapture methodologies can be used to account for detection probability, but recapture 
rates, especially with terrestrial salamanders, can be low and capture-recapture methods can be 
costly when used in large-scale field experiments (Bailey et al. 2004a).  In the case of large-scale 
studies, researchers can use a double-sampling design that uses capture-recapture analysis on a 
subset of sites to estimate detection probability and calibrate counts for the complete set of 
sampling locations (Bailey et al. 2004a, Bailey et al. 2004c). 
 
More focus on site conditions, landscape position, and abiotic features.  There is evidence that 
elevation, slope, concavity, and other landform characteristics may be important determinants of 
woodland salamander occurrence and abundance in central hardwood forests (Ford et al. 2002a, 
b).  Many studies of amphibian response to forest management do not account for landscape 
position and associated conditions such as moist, concave, lower-slope positions with a thicker 
leaf litter layer and drier, warmer ridge tops or south-facing slopes that could influence 
amphibian or reptile species composition and their response to disturbance.   When compared to 
other vertebrates, patterns of amphibian distribution across landscape scales remain poorly 
known (Johnson et al. 2002, Dillard et al. 2008a).  Because amphibians have limited dispersal 
abilities and small home ranges, site-specific habitat factors often are assumed to have an 
overriding influence on patterns of amphibian distribution.  However, there is increasing 
evidence that abiotic habitat characteristics measured at broad spatial scales are important 
predictors of amphibian occurrence and abundance within forest ecosystems.  Although 
disturbance and succession of vegetation exert a strong influence on amphibian distribution and 
abundance (deMaynadier and Hunter 1995, Russell et al. 2004), recent research indicates that the 
importance of abiotic habitat features such as geology, topography, and climate have not been 
sufficiently recognized (Russell et al. 2005, Harper 2007, Dillard et al. 2008a, b).  For example, 
Dillard et al. (2008a, b) showed that elevation, slope, aspect, and parent geology were better 
predictors of the occurrence of the threatened Cheat Mountain salamander (P. nettingi) in 
deciduous forests of West Virginia than were the composition or successional stage of overstory 
vegetation.  Moseley et al. (2009) determined that the effects of canopy openings (e.g., edge 
effects) on woodland salamanders within deciduous forests of West Virginia depended on site 
aspect. 
 

Landscape-level population effects. Most studies of amphibian and reptile response to forest 
management have been conducted at the scale of an individual stream, forest stand, or wetland.  
Therefore, more research is needed to assess the persistence of reptile and amphibian 
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communities at the landscape or watershed scale (Perkins and Hunter 2006).  Renken et al. 
(2004) recorded similar responses by reptiles and amphibians to clearcuts as in other studies, but 
the researchers failed to detect larger-scale impacts given the relatively small percentage of the 
landscape that was harvested.  Ford et al. (2002a) suggested that salamander populations in 
small, isolated cove hardwood stands might be more vulnerable to extirpation by timber harvests 
than populations in larger, less isolated coves.  Because juvenile amphibians are more 
susceptible to habitat change, management activities that fragment habitats likely will have the 
greatest impact on species for which juveniles conduct the majority of dispersal among breeding 
and non-breeding locations (Patrick et al. 2008).  Some amphibian species avoid roads likely 
because of reduced soil moisture and cover, so landscape-level conservation strategies should 
account for these increasingly prominent movement barriers (Gibbs 1998, Marsh and Beckman 
2004, Semlitsch et al. 2007).  In contrast, anecdotal evidence indicates that secondary forest 
roads and trails with little use may not have negative impacts on herpetofauna and in some cases 
be used as habitat (e.g., Dillard et al. 2008c).  More information is needed to better understand 
how landscape factors influence amphibian and reptile response to the creation of early 
successional habitats in upland hardwood forest (Ford et al. 2002a). 
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Table 11.1 Estimated recovery periods for terrestrial plethodontid salamander populations following timber harvest. 
Authors Recovery 

Period 
Disturbance Comments 

Ash 1997 20-24 years Clearcut Monitored salamanders in 3 clearcuts using night searches 
on 225-m2 plots for 15 years post-harvest and recovery 
times estimated from regression curves 

Harper and Guynn 1999 13-39 years Clearcut Used a terrestrial vacuum to sample leaf litter and 
associated fauna in 120, 0.04-ha plots in 3 stand age 
classes (0-12, 23-39, and ≥40 years old) 

Pough et al. 1987  <60 years Clearcut Conducted nighttime surveys for salamanders in 50- x 2-m 
transects in 4 disturbed stand types of different ages and in 
4 paired old-growth sites 

Homyack and Haas 2009 >60 years Various Harvests Conducted nighttime searches of 15- x 2-m transects for 13 
years following 7 canopy removal treatments and 
estimated population recovery from demographic models 

Petranka et al. 1993 50-70 years Clearcut Surveyed salamanders in 50- x 50-m plots at 47 sites 
ranging in age from 2 to 120 years old 

Herbeck and Larsen 1999 >80 years  Regeneration cut Conducted area- and time-constrained searches for 
salamanders in 21 144-m2 plots located in 3 age classes 
(<5, 70-80, >120 years old) 

Ford et al. 2002 >85 years Clearcut Captured salamanders in drift fence arrays in 13 cove 
hardwood stands ranging in age from 15 years old to >85 
years old 

Petranka et al. 1994 120 years Clearcut Conducted daytime searches for salamanders in 50 x 50-m 
plots at 52 forest sites ranging from <5 years old to 
approximately 200 years old 

 


