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ABSTRACT. Obtaining sufficient numbers of detections during point counts to make inferences
concerning the presence and abundance of secretive species, such as many species of marsh birds, can be
difficult. However, autonomous recording units (ARUs) can provide extended survey windows, potentially
allowing for more effective detection of elusive species. We assessed the feasibility of using both ARUs and
point-count surveys to monitor Black Rails (Laterallus jamaicensis) and Least Bitterns (Ixobrychus exilis), two
secretive marsh birds of conservation concern. We identified vocalizations in ARU recordings using acoustic
analysis software, and combined these observations with those from point counts to model occupancy of both
species in coastal marshes of eastern North Carolina in 2016 and 2017 while accounting for variation in
detection. Use of ARUs doubled the number of points where we detected Black Rails; thus, the combined
point count-ARU model yielded a greater occupancy probability for this species. However, the ARUs recorded
few Least Bittern vocalizations, suggesting that successful application of ARUs may depend on the vocal
complexity of focal species. Although the appropriateness of integrating ARUs with in-person monitoring
varies among species, our results illustrate that this integration increased detections of an elusive species of
conservation concern.

RESUMEN. Uso de Unidades Aut�onomas de Grabaci�on incrementa la detecci�on de un
ave de pantano sigilosa
La obtenci�on de una cantidad suficiente de detecciones durante conteos por puntos, que permita hacer
inferencias sobre la presencia y abundancia de especies sigilosas, como muchas especies de aves de pantano,
puede ser dif�ıcil. Sin embargo, el uso de unidades aut�onomas de grabaci�on (ARUs) puede ampliar estas
oportunidades durante reconocimientos de campo, permitiendo potencialmente una detecci�on m�as efectiva de
especies elusivas. Determinamos la factibilidad de uso de ARUs y reconocimientos por medio de conteos por
puntos para registrar rascones (Laterallus jamaicensis) y avetoros (Ixobrychus exilis), dos aves de pantano
sigilosas con estatus de conservaci�on preocupante. Identificamos vocalizaciones en grabaciones con ARUs
utilizando software de an�alisis ac�ustico y combinamos estas observaciones con aquellas de conteos por puntos
para modelar la ocupaci�on de ambas especies en los pantanos costeros del este de North Carolina en 2016 y
2017 mientras contabiliz�abamos la variaci�on de su detecci�on. El uso de las ARUs duplic�o el n�umero de
puntos donde detectamos a Laterallus jamaicensis, con lo que el modelo conteo por punto-ARU gener�o una
probabilidad de ocupaci�on mayor para esta especie. Sin embargo, las ARUs grabaron pocas vocalizaciones de
Ixobrychus exilis, lo que sugiere que el uso exitoso de ARUs podr�ıa depender de la complejidad vocal de la
especie focal. Aunque la pertinencia de integrar ARUs con registros hechos en persona var�ıa entre especies,
nuestros resultados ilustran que dicha integraci�on incrementa las detecciones de una especie elusiva cuya
conservaci�on es preocupante.
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Many species of birds are difficult to
detect because of their scarcity, reluctance to
vocalize, secretive behavior, or occurrence in
areas where human access is impractical. For
researchers, obtaining sufficient numbers of
detections to make inferences about these
elusive species can be especially difficult.
Accurate estimates of detection probability
are critical to improve estimates of occu-
pancy and abundance from count data, but

require a sufficient number of observations
(Nichols et al. 2000, Thompson 2002, Royle
and Nichols 2003, MacKenzie 2006, Simons
et al. 2007). As a result, the large sampling
effort needed to detect elusive species can be
logistically prohibitive (MacKenzie et al.
2006, Durso et al. 2011). Because effective
management strategies require accurate moni-
toring (Ralph et al. 1993), developing effec-
tive methods for detecting elusive birds is
essential for informing conservation
decisions.1Corresponding author. Email: lrbobay@ncsu.edu
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Autonomous Recording Units (ARUs) have
emerged as a method for monitoring wildlife
vocalizations, and can potentially ameliorate
some of the challenges associated with detect-
ing elusive species. An ARU is a contained,
weatherproof recording device equipped with
a microphone that can be left in the field and
set to record for days at a time. ARUs can be
programmed to record scheduled time win-
dows to increase battery life and extend their
functional time in the field. This extensive
survey window includes the night hours when
in-person surveys are difficult and some spe-
cies are most detectable (Hutto and Stutzman
2009, Goyette et al. 2011, Sidie-Slettedahl
et al. 2015). Compared to point counts,
ARUs may also be better able to detect elusive
or threatened species that seldom vocalize
because they can be left in the field for long
periods (Celis-Murillo et al. 2009, Venier
et al. 2012, Holmes et al. 2015, Campos-Cer-
queira and Aide 2016, Drake et al. 2016).
Additionally, recording units provide a verifi-
able, permanent record of the species vocaliz-
ing at a particular site, potentially reducing
observer error (Brandes 2008, Drake et al.
2016, Shonfield and Bayne 2017). Despite
these potential benefits, use of ARUs can still
present challenges (Hutto and Stutzman 2009,
Sidie-Slettedahl et al. 2015). For example,
determining relative abundance of a species is
difficult with an ARU, whereas the relative
locations of vocalizations determined during
point counts can be used to more accurately
determine the number of individuals present
at a site (Sidie-Slettedahl et al. 2015). Direct
comparisons of recording units to human
observers have revealed mixed results, with
some authors suggesting that detection rates
were superior with ARUs (Acevedo and Vil-
lanueva-Rivera 2006, Celis-Murillo et al.
2009) and others reporting them as either
inferior to (Hutto and Stutzman 2009, Sidie-
Slettedahl et al. 2015) or equal to human
observers (Holmes et al. 2014, Alquezar and
Machado 2015, Van Wilgenburg et al. 2017).
Perhaps most importantly, ARU monitor-

ing requires significant effort to locate and
identify the vocalizations of species of interest
in the recordings (Hutto and Stutzman
2009). Two methods have been used to
detect vocalizations in ARU recordings:
(1) manual listening, including visual verifica-
tion of spectrograms, and (2) use of

automated analysis programs such as Song-
Scope, Kaleidoscope, RavenPro, and MonitoR
(Knight et al. 2017, Shonfield and Bayne
2017). Although reducing analysis time when
compared to manual review (Knight et al.
2017), these programs can yield high rates of
false positives and false negatives, making
manual analysis a preferred alternative for
some studies (Sidie-Slettedahl et al. 2015,
Stiffler et al. 2018). Additionally, the high
number of false positives detected by auto-
mated analysis necessitates manual validations
of detections (Knight et al. 2017). Despite
these disadvantages, automated detection can
provide enough data to draw inferences on
species presence (Knight et al. 2017, Shon-
field and Bayne 2017). New acoustic analysis
methods that automate identification of vocal-
izations continue to emerge, but require sub-
stantial effort and may yield low accuracy of
detection, especially for less complex vocaliza-
tions (Duke and Ripper 2013, Sidie-Slette-
dahl et al. 2015, Knight et al. 2017).
Marsh birds, particularly rails and bitterns,

are notoriously elusive and occur in densely
vegetated areas where access can be difficult;
thus, studies of marsh birds could potentially
benefit from the monitoring approach offered
by ARUs. For example, Least Bitterns (Ixo-
brychus exilis) and Black Rails (Laterallus
jamaicensis) vocalize irregularly and are diffi-
cult to monitor (Eddleman et al. 1994,
LeGare et al. 1999, Bogner and Baldassarre
2002). ARUs, however, can sample continu-
ously for long periods, making detection
more likely for birds that vocalize infre-
quently and nocturnal species that vocalize
when human access can be difficult (Hutto
and Stutzman 2009, Goyette et al. 2011).
To account for the imperfect detection bias

inherent to surveying birds, the Standardized
North American Marsh Bird Monitoring Pro-
tocol accommodates several designs for esti-
mating detection probability, including
repeated visits, distance estimation, and time-
of-detection (Conway 2011). Regardless,
detecting enough individuals to make valuable
inferences about distribution and habitat asso-
ciations remains difficult for species that
vocalize infrequently and at night, such as
Black Rails, Least Bitterns, and other species
of marsh birds (DeLuca et al. 2004, Correll
et al. 2016, Wiest et al. 2016). Such detec-
tion issues can lead to elusive focal species
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being dropped from analyses due to a lack of
data (Baschuk et al. 2012). As such, monitor-
ing efforts for these secretive species may
require higher-resolution detection histories to
inform the detection process. This may be
resolved by using ARUs to detect elusive spe-
cies, including Black Rails and Least Bitterns.
The extended recording window of ARUs
also offers valuable information on temporal
variation in bird vocalizations across both day
and night hours, which can be difficult to
obtain using in-person surveys because they
are seldom conducted at night (Sidie-Slette-
dahl et al. 2015).
To better understand the utility of ARUs

for monitoring elusive marsh birds, our pri-
mary goal was to examine how estimates of
occupancy are influenced by augmenting tra-
ditional in-person marsh-bird monitoring
with ARU recordings. Our objectives were to
determine (1) if ARUs in combination with
point-count surveys are more effective than
point-count surveys alone at detecting elusive
species, and (2) if Least Bitterns and Black
Rails are well-suited for automated detection.

METHODS

Study area. Our study was conducted in
the herbaceous marshes of the Albemarle-Pam-
lico Estuary System in eastern North Carolina.
The adjacent land masses were comprised of
extensive wetlands, including over 9000 ha of
non-estuarine freshwater marsh and over
23,000 ha of brackish marsh (Moorhead and
Brinson 1995). Marshes in the study area cov-
ered a gradient of salinity, with freshwater wet-
lands comprised mostly of sawgrass (Cladium
jamaicense), cattail (Typha spp.), and common
reed (Phragmites australis), and more saline
marshes comprised of black needlerush (Juncus
roemarianus), bulrush (Schoenoplectus spp.), salt
hay (Spartina patens), and saltgrass (Distichlis
spicata). At higher elevations, the marshes tran-
sitioned to forest with a small component of
wax myrtle (Myrica cerifera) and other shrubs.

Site selection. We identified candidate
marshes to survey for marsh birds using a
combination of aerial photography and
National Wetlands Inventory (USFWS 2010).
For marshes that we had permission to access,
we further limited our scope to areas accessi-
ble within 30 min walking from a road, or
1 h of paddling a canoe from a launch site.

In these accessible areas, we randomly selected
points with a minimum between-point dis-
tance of 400 m, as suggested by Conway
(2011). The original sample included 127
points, but 35 were dropped because dense
shrubs at the upper end of the transition to
forest impeded foot travel. As such, the final
set of survey locations included 92 points.

Point-count surveys. We conducted
point-count surveys during April, May, and
June 2016 and 2017, and ARU surveys dur-
ing the same months in 2017. Point counts
were conducted between 30 min before sun-
rise and 2 h after sunrise, in accordance with
the Standardized North American Marsh Bird
Monitoring Protocol (Conway 2011). In each
year, we surveyed each site between one and
four times except two points that were not
visited in 2017. One survey consisted of an
unlimited-radius point count with a 5-min
passive period followed by a second 5-min
period during which vocalizations of target
species were broadcast for 1 min each. We
used the same recording used by the Salt-
marsh Habitat and Avian Research Program
in Region Nine, which includes vocalizations
of a Black Rail, Least Bittern, Virginia Rail
(Rallus limicola), King Rail (R. elegans), and
Clapper Rail (R. longirostris). We did not
include the vocalization of Common Galli-
nules (Gallinula galeata) because we were pri-
marily interested in species associated with
herbaceous cover. All of the marsh–obligate
species listed above were recorded because
point counts were conducted to investigate
several research questions, but, for the pur-
poses of this study, we focus only on detec-
tions of Black Rails and Least Bitterns.

ARU surveys. We deployed two record-
ing units (SongMeter SM4, Wildlife Acous-
tics, Maynard, MA) at a random sample of
23 of the 92 total points between 1 April and
30 June 2017. ARUs were mounted ~ 1.5 m
above the marsh using PVC pipes inserted
into the substrate. We programmed the units
to record continuously from 2 h before sunset
to 2 h after sunrise to capture the times when
most marsh birds are most active (Conway
2011) and the overnight period when species
such as Eastern Black Rails (L. j. jamaicensis)
are known to vocalize (Eddleman et al. 1994)
and ambient noise is at a minimum (Goyette
et al. 2011). Each deployment lasted two to
three nights at a given point. Each of the 23
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points where an ARU was deployed received
only one deployment.

Acoustic analysis. We used Kaleidoscope
software (version 4.3.1) from Wildlife Acous-
tics to analyze raw recordings. We followed the
three-stage analysis procedure described in the
Kaleidoscope user’s manual (Wildlife Acoustics
2017). In the first stage, we used a set of train-
ing recordings to generate “clusters” of similar
vocalizations based on the structure of their
visual signature, or spectrogram. Our training
recordings were a set of preliminary ARU
recordings collected in 2016 from nearby
Cedar Island National Wildlife Refuge, where
Least Bitterns are common and Black Rails are
suspected to breed (Watts 2016). However,
initial analysis revealed that Kaleidoscope iden-
tified too few Black Rail and Least Bittern
vocalizations from these training recordings to
be useful in the successive analysis stages. As
such, we added high-quality recordings of both
the song and growl calls of Black Rails and typ-
ical song vocalizations of Least Bitterns
obtained from the Macaulay Library
(www.macaulaylibrary.org) and Xeno-Canto
(www.xeno-canto.org) to the training data. In
general, we included as much vocalization vari-
ability as possible in training data for both
focal species to minimize false negatives,
acknowledging this may come at the cost of
more false positives. After reclustering the
training data with these augmented vocaliza-
tions, we manually labeled over 60% of the
6684 total vocalizations detected by the pro-
gram as a specific species or as “non-focal”
either by listening or by visually confirming
spectrograms. We labeled vocalizations in all of
the 77 identified clusters to ensure we provided
Kaleidoscope with information for the full
diversity of vocalizations in training data. In
stage two, we reclustered the training data, this
time using the labeled vocalizations. This stage
allowed us to refine Kaleidoscope’s ability to
categorize vocalizations based on the vocaliza-
tions we identified. As in stage 1, Kaleidoscope
reclustered the vocalizations in the training
data, but only those vocalizations assigned to
one of the species categories with labels we pro-
vided. We then investigated those vocalizations
identified by Kaleidoscope as Black Rails or
Least Bitterns to either confirm that Kaleido-
scope identified it correctly, or to change the
label to “non-focal” when it identified the
vocalization incorrectly. We changed 13 of the

1536 Black Rail vocalizations to “non-focal”
and 45 of the 187 Least Bittern vocalizations
to “non-focal.” Finally, we used this refined set
of vocalizations to cluster the full set of field
recordings from 2017. In this third stage, we
manually investigated all vocalizations from the
field recordings identified by Kaleidoscope to
be verified as either Black Rails or Least
Bitterns.

Statistical analysis. We used single-sea-
son occupancy models to investigate the rela-
tionship between detection probability and
occupancy for Least Bitterns and Black Rails
using the R package Unmarked (Fiske and
Chandler 2011). This model framework
assumes that whether a given site is occupied
or does not change across the duration of the
study. We acknowledge that the occupancy
state may have changed between the 2016 and
2017 breeding seasons, so we included year as
a covariate on occupancy to account for this
variation. For each species, we fit one model to
the observations from the point-count surveys
only, then an analogous model to the com-
bined observations from the point counts and
the ARUs.
We estimated detection probability using

the detection history across several repeated
sampling occasions. We treated the passive and
active survey periods of a given visit as inde-
pendent sampling occasions. Detections during
the passive survey period can potentially bias
the subsequent active survey period, but, given
that we never detected Black Rails during the
passive survey period, we believe this depen-
dence had a negligible effect on results. We
included a categorical variable of method as a
covariate on detection to distinguish between
the passive and active survey periods. For the
models with both point-count and ARU data,
this method covariate included an additional
category for ARU sampling occasions. Each
ARU deployment was separated into 1-h inde-
pendent sampling occasions. As such, we used
the confirmed Black Rail and Least Bittern
vocalizations identified by Kaleidoscope to
determine if each species was detected or not
for each 1-h sampling occasion, regardless of
how many vocalizations occurred in a given
sampling occasion. We did not have an equal
number of 1-h sampling occasions per point.
Although we did not account for uneven sam-
pling, we believe that the sites sampled more
were not systematically different from those
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sampled less, and thus should not bias our esti-
mates of detection. Finally, we included linear
and quadratic effects of time of day and ordinal
date as covariates on detection.
To evaluate the improved model perfor-

mance between the two sets of observations
(in-person only and combined in-person and
ARU), we built a suite of occupancy models
with different covariates on detection. For
each set of observations, we fit five models
with different combinations of linear and
quadratic effects of both date and time
(Table 1). In all models, we included a
covariate of method on detection and a
covariate of year on occupancy. We then
ranked the five models for each dataset and
evaluated model diagnostics.

RESULTS

Kaleidoscope identified 11,872 Black Rail
detections in the 2017 ARU recording data.
Of these, we confirmed 91 vocalizations of
Black Rails, including 79 songs and 12
growl calls. However, all confirmed growl
calls were identified by Kaleidoscope as the
more typical “keekeedrrr” vocalization. The
remaining 11,781 detections were false posi-
tives, and included background noise, human
voices, and vocalizations of other species of
birds. The presence of Black Rails was

confirmed at 11 points, including eight of
23 points (34.8%) with ARUs, four of 92
points (4.4%) with in-person surveys, and
one point where both methods were used
(Table S1). Kaleidoscope identified 3920
Least Bittern detections in the same ARU
recording data using our clusters, but only
five were true positives at three different
sites. As with Black Rails, most detections
were false positives.
We observed greater occupancy probabili-

ties for Black Rails using ARUs than with
point counts alone (Fig. 1). Detection proba-
bility for Black Rails was 0.05 based on point
counts and 0.08 with the addition of ARU
data. Mean occupancy probability increased
from 0.17 for point counts to 0.38 with the
addition of ARU data. The addition of ARU
data made it possible to incorporate more
covariates on both occupancy and detection
(Table 1). Models fit only to point counts
did not converge when the number of esti-
mated parameters was greater than five,
whereas we could estimate at least nine
parameters with models fit to the combined
point-count and ARU observations.
The amount of temporal variation we

observed in the detection probability for
Black Rails and Least Bitterns depended on
whether ARU data were included. We were
most likely to detect Black Rails between

Table 1. Model comparisons of hierarchical occupancy models with linear and quadratic covariate effects
on detection of Black Rails fit to observations from both point-count surveys and point-count surveys aug-
mented with ARUs in eastern North Carolina, 2016–2017.

Data Detection model Con
�log
(lik) K AIC DAIC x

Cum
Wt

Point count ~ typea + timeb + datec + date2 No 16.4 7 46.7 0.0 0.5 0.48
Point count ~ type + time + date No 17.7 6 47.4 0.7 0.3 0.81
Point count ~ type + time + time2 + date + date2 No 16.3 8 48.7 1.9 0.2 0.99
Point count ~ type + time Yes 22.8 5 55.6 8.9 0.0 1.00
Point count ~ type Yes 25.2 4 58.4 11.7 0.0 1.00
All ~ type + time + time2 + date + date2 Yes 88.1 9 194.2 0.0 0.6 0.59
All ~ type + time + date Yes 91.2 7 196.3 2.1 0.2 0.80
All ~ type + time + date + date2 Yes 90.7 8 197.3 3.1 0.1 0.93
All ~ type Yes 94.6 5 199.2 4.9 .01 0.98
All ~ type + time Yes 94.3 6 200.7 6.4 0.0 1.00

Model diagnostics include convergence (Con), negative log-likelihood (�log(lik)), the number of param-
eters (K), Akaike’s Information Criterion (AIC), the difference in AIC from the top-ranked model
(DAIC), the model weight (x), and the cumulative model weight (CumWt).
aCategorical variable for active, passive, and ARU survey methods.
bTime of day in minutes after midnight.
cOrdinal date.
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midnight and 04:00, although point counts
were never conducted before 05:00. The
probability of detecting Black Rails was close
to zero at all other times (Fig. 2). The pau-
city of observations in the point-count data
led to drastically different relationships
between Black Rail detection probability and
date and time than when ARU data were
added (Fig. 2). The effects of date and time
on detection were significant for Black Rails
when ARU data were incorporated (Table 2).
However, date was the only significant predic-
tor of detection probability for the point-
count model (Table 2).

DISCUSSION

Augmenting point-count surveys with ARU
surveys increased the possibility of making sta-
tistical inferences about both occupancy and
detection of Black Rails, but this worked less
well for Least Bitterns. We increased the num-
ber of Black Rail detections and were able to

incorporate more parameters into models
using a combined ARU-point count dataset.
Estimated detection probability for Black Rails
was low even after incorporating ARU data,
but ARUs provided a better time window to
compensate for the secrecy of Black Rails. As
a result, Black Rails were detected at more
points using ARUs than by point counts
alone, despite unwieldy rates of false positives
during the automated vocalization detection
process. In contrast, the addition of ARU data
for Least Bitterns did little to improve esti-
mates because we detected few additional
Least Bittern vocalizations using ARUs.
The increased sampling window is a big

advantage of ARUs over point-count surveys
(Shonfield and Bayne 2017, Stiffler et al.
2018). Dense vegetation, uneven terrain, deep
mud, and other obstacles make navigating
tidal marshes both difficult and time-consum-
ing. As a result, one field technician was only
able to complete counts at four to five points
within the recommended survey time

Fig. 1. Mean occupancy probability with 95% con-
fidence intervals for Black Rails (BLRA) and Least
Bitterns (LEBI) estimated using both point-count
and autonomous recording unit surveys (circle) and
point-count surveys only (triangles) in coastal wet-
lands in eastern North Carolina, 2016–2017.

Fig. 2. Detection probability for Black Rails pre-
dicted using a combination of point-count surveys
and autonomous recording units (solid line with
95% confidence interval in dark-shaded region)
compared to the detection probability predicted
from just point-count surveys (dashed line with
95% confidence interval in light-shaded region) in
eastern North Carolina, 2016–2017. Detection
probabilities are given in relation to (A) time in
hours after midnight and (B) ordinal date begin-
ning with 10 April (day 100).
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window. Additionally, the temporal distribu-
tion of Black Rail vocalizations documented
in our study suggests that point counts con-
ducted after sunrise do not adequately capture
all vocalization times for this species.
Although conducting point counts at night is
possible, negotiating wetland terrain in the
dark is difficult, and nocturnal surveys could
overlook other, more diurnal species. ARUs
could also be employed to determine the
extent of Black Rail movements in response
to their dynamic habitat conditions during
the breeding season, which could potentially
violate our assumption of population closure
within a season. For scarce or elusive species
such as Black Rails, ARUs may be the most
feasible method of detection.
Acoustic analysis using Kaleidoscope was

much less effective for Least Bitterns. The Least
Bittern vocalization is low in frequency and not
unique or complex (i.e., a simple note repeated
3–5 times in succession), making it difficult for
search algorithms to distinguish it from other
noise, such as cars and wind. Other studies have
encountered similar detection issues with sim-
ple calls. Swiston and Mennill (2009) docu-
mented more false positives when using
automated detection for the one- or two-note
calls of Pale-billed (Campephilus guatemalensis)
and Ivory-billed (C. principalis) woodpeckers
than when scanning for the more complex calls
of Pileated Woodpeckers (Dryocopus pileatus).
Additionally, Sidie-Slettedahl et al. (2015) were
unable to use automated software to distinguish
the “click” vocalizations of Yellow Rails (Cotur-
nicops noveboracensis) from the calls of Sedge

Wrens (Cistothorus platensis) and Pseudacris
frogs, sounds that a human observer can easily
distinguish. Knight et al. (2017) reported that,
of five acoustic recognizer programs, Kaleido-
scope was the least effective at detecting the
calls of Common Nighthawks (Chordeiles
minor) that are also relatively simple vocaliza-
tions. Therefore, further development of auto-
mated detection programs are needed to
accommodate vocalizations of some species,
especially those with less complex calls.
Additional disadvantages of using the auto-

mated detection process include high rates of
false positives and an unknown number of false
negatives. For Black Rails, we had thousands of
false positives compared to only 91 verified
vocalizations, making manual verification of
Kaleidoscope detections both mandatory and
time-consuming. Varying levels of background
noise may create uneven rates of false negatives
when using automated analysis of ARU record-
ings. Although ARUs are potentially more
effective at night when there are fewer vocaliz-
ing species and less background noise (Goyette
et al. 2011), we found that loud anuran cho-
ruses in the hours immediately after sunset ren-
dered parts of some recordings useless, as did
wind and heavy rain. This noise is problematic
because increased background noise and over-
lapping vocalizations will increase the rate of
false negatives in recognizer output (Buxton
and Jones 2012). Because of the unknown rate
of false negatives, we were unable to determine
if the nocturnal peak in Black Rail detections
represented an actual increase in vocalization
rate or just an artifact of a reduction in

Table 2. Means (� SE) for the detection covariate effects for Black Rails and Least Bitterns estimated
using observations from point counts and ARU surveys combined, as well as observations from only point
counts.

Parameter
Black Rails

Least Bitterns

All All Point count only

Intercept �3.49* (0.69) �1.05* (0.35) �0.21 (0.36)
Method - ARU �0.64 (0.85) �1.78* (0.86) NA
Method - passive �11.78 (140.56) �0.40 (0.34) �0.43 (0.35)
Time �0.51 (0.32) �0.30 (0.43) �0.15 (0.23)
Date �0.75* (0.29) 0.82* (0.31) 0.68* (0.27)
Time2 0.54* (0.24) �0.09 (0.38) �0.42 (0.22)
Date2 0.37 (0.27) �0.23 (0.23) �0.21 (0.25)

The point-count-only model for Black Rails did not converge when more than two covariate were
included due to lack of detections and, therefore, is not included. An asterisk (*) indicates a significant
effect (P < 0.05).
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background noise late at night. The number of
false positives and negatives, as well as the time
required to create detectors, can lead research-
ers to abandon use of automated detection in
favor of manually listening to recordings
(Sidie-Slettedahl et al. 2015, Stiffler et al.
2018). These complexities of the verification
process highlight why species that can be easily
surveyed with point counts should not be the
focus of ARU surveys.
Despite the aforementioned drawbacks,

ARUs can be a valuable component of sam-
pling for certain focal species and provide a
way to increase detection rates of secretive spe-
cies such as Black Rails. We detected Black
Rails at three times as many points by combin-
ing ARU and point-count surveys than we did
with point counts alone, demonstrating that
use of ARUs can provide more information
about the population trends and biology of this
imperiled species. Little additional effort was
required to place ARUs in the field because we
were conducting in-person surveys at the same
points. In cases similar to ours, ARUs can be
added to a point-count survey protocol to
improve detection of elusive species.
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