ABSTRACT

SANDERS II, CHARLES WILLIAM. Reproductive Parameters, Heavy Metal Concentrations,
and Disease Prevalence in North American River Otters (Lontra canadensis) across North
Carolina. (Under the direction of Dr. Christopher DePerno).

The North American river otter (Lontra canadensis; hereafter otter) is the largest
mustelid in North Carolina and was distributed statewide. Populations were decimated by the
early 1900s and otter trapping was prohibited in 1938, reopened in 1947, and gradually expanded
until 2005. The North Carolina Wildlife Resources Commission (NCWRC) and Great Smoky
Mountains National Park combined to release 404 otters to restore populations in western North
Carolina. River otters are currently the only harvested otter species worldwide and populations
are closely monitored.

Diseases may have an impact on the otter population and other aquatic mammals, through
exposure to emerging diseases, contact with domestic animals (e.g., domestic cats), or less robust
condition of individuals. Leptospirosis and toxoplasmosis are priority zoonoses and maintained
by domestic and wild mammals. Although parvovirus is not zoonotic, it affects pets causing mild
to fatal symptoms. Even though biomagnification makes aquatic apex predators particularly
vulnerable to environmental contaminants, no prior information exists on the North Carolina
otter population.

To determine population dynamics, disease prevalence, and levels of contamination we
worked throughout the three Furbearer Management Units (FMUs) and 14 river basins in North
Carolina to collect carcasses from trappers during the trapping seasons established by the
NCWRC. During 1978-1980 (Period One; Coastal Plain and Piedmont) and the 2009-
2013/2014-2016 (Period Two; statewide) trapping seasons, we collected otter carcasses from

licensed trappers, fur buyers, and wildlife damage control agents. We conducted necropsies,



analyzed age structure, counted corpora lutea and fetuses for fecundity estimates (Chapter 1),
tested brain and kidney tissue for leptospirosis, parvovirus, and toxoplasmosis (Chapter 2), and
determined the liver and kidney concentrations of arsenic, cadmium, calcium, cobalt, copper,
iron, lead, magnesium, manganese, mercury, molybdenum, selenium, thallium, and zinc (Chapter
3).

During Period One, 617 otter carcasses (330 male, 287 female) were collected from the
Coastal Plain and Piedmont. During Period Two, we collected 822 (524 male, 298 female) otter
carcasses across North Carolina. Age distributions for all otters were skewed toward the
younger age classes and did not differ between collection periods. We detected a 45% increase
in fecundity overall between Periods One and Two, and reproduction that was absent by juvenile
and yearling otters during Period One was present during Period Two. Three otters (1%) tested
positive for Leptospira interrogans, 41 (19%) for Parvovirus spp, and 53 (24%) for Toxoplasma
gondii. All elements except for cadmium were detected at higher levels in liver samples
compared to kidney samples. Most element concentrations remained stable or increased with
age. Some river basins and FMUs were significantly higher than the others.

Our results indicate the reproductive distribution has gradually shifted to include younger
otters. There are many drivers of reproduction, including food, habitat, environmental
contaminants, and population in general. However, otter populations may experience different
age structure and fecundity levels depending on harvest pressure and environmental stressors.
Although parvovirus and toxoplasmosis are relatively common in North Carolina otters, the otter
harvest has remained steady and the population appears to be abundant and self-sustaining.
Therefore, parvovirus and toxoplasmosis do not currently appear to be negatively impacting the

population. None of the elements we tested occurred at toxic levels. Our research establishes



baseline concentration levels for North Carolina which will benefit future monitoring efforts and
provide insight into future changes in the otter population. Harvest should be closely monitored
and regulated, and future studies should assess the effects of disease and environmental stressors
on otters and other semi-aquatic mammals, examine transmission parameters between domestic

and wild species, and the sublethal effects of infection.
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CHAPTER ONE

VARIATIONS IN REPRODUCTION AND AGE STRUCTURE IN THE NORTH

AMERICAN RIVER OTTER (Lontra canadensis) IN NORTH CAROLINA, USA

ABSTRACT

During colonial times the North American river otter (Lontra canadensis) was distributed
across North Carolina, but populations were decimated by the early 1900s. Otter trapping was
prohibited in 1938, reopened in 1947, and gradually expanded until it was opened statewide in
2005. Between 1986-1992, the North Carolina Wildlife Resources Commission (NCWRC) and
Great Smoky Mountains National Park combined to release 404 otters in translocation efforts to
restore populations in western North Carolina. River otters are the only harvested otters
worldwide, and populations are closely monitored through surveys, necropsies, and tooth
collections. We worked throughout the three Furbearer Management Units and 14 river basins in
North Carolina to collect carcasses from licensed trappers. We collected otters during the
trapping seasons established by the NCWRC. During the 1978-80 (Period One; Coastal Plain)
trapping seasons, and in the current study during 2009-2013/2014-2016 (Period Two; statewide)
trapping seasons, we collected otter carcasses from licensed trappers, fur buyers, and wildlife
damage control agents. We conducted necropsies, used cementum annuli of the lower canine for
age-analysis, and counted corpora lutea and fetuses for fecundity estimates. During Period One,
we collected 617 otter carcasses (330 male, 287 female) from the Coastal Plain and Piedmont
FMUs. During Period Two, we collected 822 (524 male, 298 female) otter carcasses across

North Carolina. Age distributions for all otters were skewed toward the younger age classes and



did not differ between collection periods. During Period One, adults in the Coastal Plain had
higher corpora lutea counts than during Period Two, while Coastal Plain yearlings and juveniles
had higher numbers of corpora lutea during Period Two. During Period Two, corpora lutea
counts differed by region, with the Mountain FMU (x = 2.6) significantly higher than the Coastal
Plain FMU (x = 1.6), or the Piedmont FMU (x = 1.9). Within the Coastal Plain FMU, total
reproduction increased by 45% from Period One to Period Two. Although the adult
reproduction in the Coastal Plain FMU dropped 16% from Period One to Period Two, juveniles
and yearlings began reproducing regularly between periods. Our results indicate that
reproduction has shifted from 1978 to 2018 to include younger otters. Reproduction in wildlife
populations is driven by food, habitat, environmental contaminants, and density dependence
within the population. However, otter populations across the range may experience different age
structure and fecundity levels depending on harvest pressure and environmental stressors.
Harvest should be closely monitored and regulated, and future studies should be conducted to
further assess the effects of environmental stressors (e.g, contaminants, water quality) on otters

and other semi-aquatic mammals including beaver, muskrat, mink, and nutria.

KEYWORDS
age structure, corpora lutea, juvenile, Lontra canadensis, reproduction, river otter, variation,

yearling

INTRODUCTION
In North Carolina, colonial records indicate a statewide distribution of North American

river otters (Lontra canadensis; hereafter otter) until the late 19" century. In the early 20™"



century, poor farming and logging practices devastated streams, which coupled with unregulated
otter harvest, decimated otter populations in the Piedmont and Mountain Furbearer Management
Units (FMUs; Figure 1). In the Coastal Plain FMU, large swamps and wetlands provided a

refuge that buffered the surviving otter populations (Wilson 1960, Melquist and Dronkert 1987).

North Carolina prohibited otter trapping from 1938-1946 (Wilson 1960). From 1947 -
1983, the newly created North Carolina Wildlife Resources Commission (NCWRC) restricted
otter harvest to the east of US highway one, within the Coastal Plain FMU and the eastern edge
of the Piedmont FMU (Figure 2). From 1984-2005, the regulated trapping season was expanded
to encompass much of the Piedmont FMU, extending to the eastern boundaries of Stokes,
Forsyth, Davie, Iredell, and Mecklenburg counties (Figure 2). In fall of 2005, the otter trapping
season was opened statewide, including the entire Mountain FMU.

Between 1986-1992, otters (81 male, 56 female) were translocated by the National Park
Service from Louisiana, North Carolina, and South Carolina into the Great Smoky Mountains
National Park (Griess 1987, Raesly 2001). Between 1988-1996, the NCWRC translocated otters
(160 male, 107 female) from the Coastal Plain FMU to the Mountain FMU (Spelman 1998).
Today, otters occupy all three physiographic regions of North Carolina (Mountain, Piedmont,
Coastal Plain) with a statewide otter trapping season and no bag limits.

The North American river otter is the only species of otter that is legally harvested for the
fur trade (Melquist and Dronkert 1987, Serfass et al. 2015). In 1990 the International Union for
Conservation of Nature and Natural Resources Species Survival Commission (IUCN/SSC) Otter
Specialist Group published a voluntary action plan for the management of river otters in the
United States and Canada (Foster-Turley et al. 1990). The plan included recommendations of

the “Working Group on Bobcat, Lynx, and River Otter” to monitor population trends, total



harvest, harvest distribution, and habitat evaluation, as well as to analyze harvested animals for
reproduction, pollutants, and other factors (Foster-Turley et al. 1990).

The NCWRC regularly monitors the otter harvest through volunteer trapper surveys, fur
buyer reporting, and Convention on International Trade in Endangered Species (CITES) tag
sales. Voluntary carcass collections are periodically conducted to monitor reproduction, and an
annual tooth/skull collection has been initiated for age structure analysis. These processes help
fulfill the Otter Specialist Group’s first and third recommended conservation priorities (Foster-
Turley et al. 1990), which include evaluating the population status of otter populations and
analyzing carcasses to increase knowledge of otter reproduction. Therefore, our objective was to
determine the age structure and reproductive rates of otters throughout North Carolina and
determine if those rates changed by river basin, FMU, and time periods, and varied by age class.
We hypothesized that reproduction would vary in the Coastal Plain FMU from 1978 to 2018,
would be higher in a reintroduced population (Mountain FMU) compared to a stable population

(Coastal Plain FMU), or a population with natural recolonization (Piedmont FMU).

STUDY AREA

We conducted our study across North Carolina. North Carolina is geographically diverse
with fourteen different river basins, seventeen terrestrial, and eleven wetland communities
(North Carolina Wildlife Resources Commission 2015). For management purposes, the
NCWRC established three FMU’s (i.e., Mountain, Piedmont, and Coastal Plain) which followed
physiographic regions and county boundaries (Figure 1). River otters have been stable within
the Coastal Plain FMU since 1978, recolonized the Piedmont FMU naturally by 1984, and were

reintroduced into the Mountain FMU between 1986-1992.



METHODS
Data Collection

During 1978-80 (Period One; Coastal Plain and Piedmont FMU) and the 2009-
2013/2014-2016 (Period Two; statewide) trapping seasons, we collected otter carcasses from
licensed trappers, fur buyers, and wildlife damage control agents. For all otters collected, we
recorded the date and location trapped which included specific coordinates, addresses, and/or a
general description of the trap site. General descriptions included the county, locality, roads, and
any prominent landmarks.

We froze all carcasses until necropsy. During the necropsy, we extracted a lower canine
tooth for cementum annuli aging (Stephenson 1977). The samples from Period One were aged at
NCSU while the samples from Period Two were sent to Matson’s Laboratory (Manhattan,
Montana). Otters aged as zero were considered juveniles, otters aged as one-year-old were
considered yearlings, and otters aged two years or older were considered adults. We removed
female reproductive tracts and preserved them in a 10% formalin solution. We sectioned each
ovary in one mm slices similar to Hamilton and Eadie (1964) and counted active corpora lutea.
We dissected the uterine horns and counted visible fetuses. During Period One, blastocysts were
collected by flushing each uterine horn with sterilized water and examining under a microscope.
During Period Two, because blastocysts are quickly degraded (Johnson et al. 2007) we did not
collect blastocysts and only report corpora lutea which is consistent with the literature (Docktor
et al. 1987, Chilelli et al. 1996, Crimmins et al. 2011)

Data Analysis
We conducted statistical analysis in SAS 9.4 (SAS Institute, Inc, Cary, North Carolina,

USA) using Proc TTEST for t-tests, Proc ANOVA for ANOVAs, and Proc GENMOD for



models. We used two-sample t-tests and one-way ANOVA to determine significant differences
between Periods One and Two (1978-1980 vs 2009-2013/2014-2016) and between FMUs. We
used Tukey’s Honestly Significant Difference (HSD) test to examine differences within
variables. We used a paired t-test to compare corpora lutea and fetus counts during Period One
and Period Two and used a one-way ANOVA to determine difference across age classes. We
used Akaike’s Information Criterion (AIC) to assess model weights and rank candidate models
(Burnham and Anderson 2002). Our generalized linear models contained fixed effects and we
limited our candidate model set to two a priori categorical covariates, age and region, to avoid
including spurious effects. Due to sample sizes not being distributed across all basins we did not
use river basin in our models. We developed relative support for the models by using Akaike
weights and then calculated the unconditional variance estimates with their associated 95%

confidence intervals (Burnham and Anderson 2002, Anderson 2008).

RESULTS

During Period One, from over 50 trappers and fur dealers, we collected 617 otter
carcasses (330 male, 287 female) from the Coastal Plain FMU (315 male, 287 female) and
Piedmont FMU (15 males) and determined ages for 330 males and 274 females. No females
were collected from the Piedmont FMU during Period One. During Period Two, we collected
822 (524 male, 298 female) otter carcasses across North Carolina from over 50 trappers and fur
dealers. We collected 54 from the Mountain FMU (34 male, 20 female), 322 from the Piedmont
FMU (204 male, 118 female), and 446 from the Coastal Plain FMU (286 male, 160 female). We

obtained ages for all but 4 specimens (2 males, 2 females).



During Period One, the average age of males (n = 330) and females (n = 274) were 1.9
and 1.7, respectively. During Period 2, the average age of males (n = 524) and females (nh = 298)
were 2.0 and 1.7, respectively. Age distributions for all otters combined across collection
periods were skewed toward the younger age classes (Figure 3) and did not differ between
collection period (t = -0.82, df = 1213, P = 0.4121). For the Coastal Plain FMU, age
distributions that included males and females were similar between collection periods (t = 0.20,
df =417, P =0.84). During Period Two, male and female age distributions differed within the
Piedmont FMU (male = 2.2, female = 1.7; F = 4.34, df = 319, P = 0.038), but were similar in the
Mountain FMU (male = 1.9, female = 1.8; F = 0.16, df =52, P = 0.689) and Coastal Plain FMU
(male = 1.6, female = 1.6; F = 0.95, df = 444, P = 0.330).

During Period One, the number of corpora lutea for all Coastal Plain females averaged
1.1. Corpora lutea for juveniles (x = 0.02), yearlings (x = 0.0), and adults (x = 2.5) were
significantly different (F = 248.06, df = 270, P < 0.0001) (Table 1), with adults being more likely
to have active corpora lutea than yearlings or juveniles (Q = 3.33, df =270, a = 0.05). During
Period Two, the number of corpora lutea for Coastal Plain females across all age classes
averaged 1.6. Corpora lutea for juveniles (x = 1.1), yearlings (x = 1.4), and adults (x = 2.0) were
significantly different (F = 12.96, df = 143, P < 0.0001) (Table 1); adults were more likely to
have corpora lutea than yearlings or juveniles (Q = 3.35, df = 143, a. = 0.05). Within the Coastal
Plain FMU, corpora lutea counts differed between Period One (x = 1.05) and Period Two (X =
1.62;t=4.12, df =420, P < 0.0001). Adults during Period One produced higher corpora lutea
counts than during Period Two (t = -2.53, df = 166, P = 0.0122), while yearlings (t = 11.96, df =
47, P <0.0001) and juveniles (t = 6.92, df = 35, P < 0.0001) produced higher counts of corpora

lutea during Period Two.



During Period Two, corpora lutea counts differed by FMU (F = 8.44, df = 277, P =
0.0003); the Mountains (x = 2.6) were significantly higher (Q = 3.33, df = 275, a = 0.05) than the
Piedmont (X = 1.9) and Coastal Plain (X = 1.6). The top model for corpora lutea incorporated
FMU as a classification variable and age as a numeric variable with all effects fixed. This model
held 99% of the model weight, and the next closest model was over 13 AAIC away, and all
covariates were significant via model averaging (Tables 2, 3).

During Period One, the number of fetal counts for all Coastal Plain females averaged 0.8.
Adults averaged 2.0 fetuses and were significantly higher (F = 173.37, df = 270, P < 0.0001)
than juveniles (x = 0.0) and yearlings (x = 0.0; Q = 3.33, df = 270, o.= 0.05). During Period
Two, the number of fetuses for all Coastal Plain females, regardless of age class, averaged 0.5
(Table 1). Fetus counts were significantly different across age classes (F = 13.45, df = 142, P <
0.0001); adults (x = 1.0) were greater than yearlings (x = 0.2) and juveniles (x =0.0; Q = 3.35, df
= 142, a = 0.05). Fetus counts for all females from the Coastal Plain FMU differed between
Period One (x = 0.8) and Period Two (x = 0.5; t =-2.51, df = 419, P = 0.0126). Adults during
Period One produced higher fetus counts (x = 2.0) than during Period Two (X = 1.0; t = -4.50, df
=174, P <0.0001), while yearling differences were not significant (t = 1.75, df =47, P =
0.0864).

During Period Two, fetus counts for all females differed by FMU (F = 3.61, df = 274, P =
0.0284); the Mountains (x = 1.2) were significantly higher (Q = 3.33, df = 274, a.= 0.05) than the
Piedmont (X = 0.5) and Coastal Plain (X = 0.5). The top model for fetus counts incorporated
FMU as a classification variable and age as a numeric variable with all effects fixed. This model

held 54% of the model weight. The next closest model (Age only) was only 0.4 AAIC away and



carried 46% of the model weight. The covariates were significant via model averaging except
for the Coastal Plain FMU variable (Tables 2, 3).

We examined litters sizes by eliminating all samples without visually verified fetuses or
blastocysts (blastocysts were only collected during Period One). Hence, we had 87 and 57
specimens from Periods One and Two, respectively. Corpora lutea counts (X = 3.0, X = 2.6) were
significantly different from fetus counts during Period One (x = 2.6, t = 4.90, df = 86, P
<0.0001), but not Period Two (x = 2.6, t =-0.11, df = 56, P = 0.9105). During Period One all
specimens with visible fetuses were adults, but during Period Two we analyzed 49 adults, seven
yearlings, and one juvenile. The one juvenile was aged by a broken tooth and was given a one-
year error, making it possible for it to be a yearling. Period Two corpora lutea counts (x = 2.7, X
=2.1) and fetus counts (X = 2.7, X = 2.6) were similar between adults and yearlings (F = 0.44, df
=56, P = 0.6487) suggesting that fetus counts supported the corpora lutea counts as accurate
estimators of litter size and the difference between the two metrics during Period One could be

from the difficulty of isolating and identifying blastocysts.

DISCUSSION

Across North Carolina, the age distribution of harvested otters was stable across the two
collection periods (spanned 40 years). During Period Two, the NCWRC estimated ~2,400 otters
were harvested annually and based on the age distributions the population appears to be healthy
with high reproduction and recruitment. The long-term stable age distribution of harvested otters
indicates that habitat is satisfactory and reproduction is stable or increasing (Sulkava et al. 2007,
Barrett and Leslie, Jr. 2012, Graser et al. 2012, Rughetti 2016, Marva and San Segundo 2018,

Nadal et al. 2018). Further, an abundance of young otters in the harvest is indicative of high



recruitment and population stability (Rolley 1985, Koons et al. 2006, Flynn and Schumacher
2009, Rughetti 2016).

Within the Coastal Plain FMU, reproduction increased by 45% from Period One to
Period Two. Although adult reproduction dropped 16% from Period One to Period Two,
juvenile and yearling reproduction began and occurred at a much higher rate than expected
during Period Two. Early reproduction has been recorded previously (Liers 1958, Crimmins et
al. 2011, Barding and Lacki 2014), but not to the extent that we detected. Our results indicate
the reproductive load has shifted to include juvenile and yearling otters. In general, water quality
has improved over the years (White 1996), and the expansion and recolonization of beavers has
provided more aquatic habitat across the landscape (Naiman et al. 1988, Snodgrass and Meffe
1998, Hood and Larson 2015) which may have contributed to the stability and recovery of the
otter population across North Carolina.

The otter reintroduction during the 1990s focused on moving otters from the Coastal
Plain FMU, where they were abundant, to the Mountain FMU where they had been extirpated
(Spelman 1998). During Period Two, we detected higher reproductive rates in the Mountain
FMU compared to the Piedmont or Coastal Plain FMUs. While the sample size in the Mountain
FMU was low, the reproductive rate is consistent with other reintroduced populations (Docktor
et al. 1987, Crimmins et al. 2011, Barding and Lacki 2014) and is interesting when considering
that the Mountain FMU had been extirpated and reintroduced, the Piedmont FMU had been
extirpated and recovered naturally, and the Coastal Plain FMU has been stable over time. While
the only significant difference in reproduction was in the Mountain FMU, reproduction in the
Piedmont FMU was still higher than in the Coastal Plain FMU. Further, adult otters typically

average two to three pups per litter, especially in reintroduced and/or recovering populations
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(Tabor and Wight 1977, Hill and Lauhachinda 1980, Docktor et al. 1987, Melquist and Dronkert
1987, Johnson et al. 2007, Crimmins et al. 2011, Barding and Lacki 2014). We believe this is
the first time that all juveniles from a particular area (Mountain FMU) have been verified as
reproductively active.

The number of juveniles and yearlings that we detected as reproductively active is
encouraging. Increased fecundity in the presence of abundant resources is an established
principle in wildlife management (King et al. 2003, Gamelon et al. 2017), and can explain
increased litter size along with yearling and juvenile breeding activity. For example, hard and
soft mast fluctuations influence the reproduction of bears, small mammals, and predators (Jensen
et al. 2012, Bogdziewicz et al. 2016, Hertel et al. 2018), and food caching birds respond to food
abundance (Ruffino et al. 2014). Normally, otters become reproductively active at age two, with
delayed implantation causing them to produce their first litter slightly before or around their third
birthday (Liers 1958, Hamilton and Eadie 1964, Melquist and Dronkert 1987). Although Liers
(1958) documented captive yearling otters giving birth it has always been considered a rare event
(Liers 1951, Hamilton and Eadie 1964, Docktor et al. 1987). However, in the last several years,
studies of otters in reintroduced populations have observed that reproductive activity in younger
individuals has become more common than once thought (Crimmins et al. 2011, Barding and
Lacki 2014).

Juvenile and yearling breeding in a species known to not sexually mature until age two
may be attributed to environmental pressures (Hamilton and Eadie 1964). A variety of external
and internal pressures impact mammal reproduction including endocrine disrupting chemicals
(Bergman et al. 2013, Pow et al. 2017), heavy metals (Rzymski et al. 2015), polychlorinated

biphenyls (Henson and Chedrese 2004, Sonne et al. 2006, Murphy et al. 2015, Folland et al.
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2016), hormones (Petrulis 2013), diet (Ruiz-Olmo et al. 2002, 2011, Ruiz-Olmo and Jiménez
2008), habitat quality (Ruiz-Olmo et al. 2011), and chemical signals (Bieber et al. 2012, Grassel
et al. 2016, Coombes et al. 2018). Specifically, endocrine disrupting chemicals impact wildlife
(Bergman et al. 2013, Pow et al. 2017), and North Carolina is known to have areas of high
concentrations of endocrine disrupting chemicals (Sackett et al. 2015).

While the reproduction levels we observed may be driven by environmental
contaminants, there are numerous studies that record breeding in river otters at earlier ages in
reintroduced populations (Docktor et al. 1987, Crimmins et al. 2011, Barding and Lacki 2014).
We detected breeding in juvenile and yearling otters, in a naturally recovered population
(Piedmont FMU) and in a population that has been stable for decades (Coastal Plain FMU).
Abundant resources contribute to reproduction, and fish abundance, in general, has improved
over the course of our study (Rulifson and Batsavage 2014, Lynch et al. 2016). It is possible that
North Carolina follows a similar trend to Minnesota where fisheries were recorded as generally
increasing in abundance since 1970, although certain key sport fisheries were declining (Bethke
and Staples 2015); but it does not fully explain why we failed to detect juvenile and yearling
reproduction during the 1970s. Although the early reproduction we observed in the Mountain
FMU my be attributed to the reintroduction, reintroduced populations did not always show the
same effects (Chilelli et al. 1996) and we observed the same phenomena in natural regenerated
(Piedmont FMU) and stable populations (Coastal Plain FMU), although at lower levels. Hence,
we speculate that a combination of complex factors that include contaminants, resources,
population density, and other unknown pressures may be contributing to earlier reproduction in

Coastal Plain FMU otters. We suggest researchers focus on the effect each covariate has on
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reproduction, which will enable us to better understand the environmental influence on otter

populations.

MANAGEMENT IMPLICATIONS

During the second half of our study, the otter trapping season was open statewide and
during Period Two, the NCWRC estimated the annual harvest at ~2,400 otters, mostly in the
Coastal Plain and Piedmont FMUs. Nevertheless, based on the age distributions and fecundity
estimates the statewide otter population appears to be stable and healthy with high reproduction
and recruitment. However, otter populations across the range may experience different age
structure and fecundity levels depending on various stressors. Harvest should be closely
monitored and regulated, and future studies should be conducted to further assess the effects of
environmental stressors (e.g., contaminants, water quality) on otters and other semi-aquatic
mammals including beaver (Castor canadensis), muskrat (Ondatra zibethicus), mink (Neovison

vison), and nutria (Myocastor coypus).
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Table 1. Corpora lutea and fetus counts in river otters (Lontra canadensis) for Period One (1978-
80) and Period Two (2009-16) in North Carolina, USA by Furbearer Management Unit (FMU)
and age class. Otters less than a year old were considered juveniles, one-year-old otters are

considered yearlings, and all otters age two or older were considered adults.

Period 1 Period 2

Age Class N1, N2 FMU Variable Mean SE Mean SE
116,35 Coastal Plain  “OPoraLUeR 08 09 o

Juveniles (0-1) 0,31 Piedmont Corlgstrjslg:tea (1)32 832
0,4 Mountains Cor'p:J:trjslgsu fea (1);2 8(2)3

43,48 Coastal Plain “OPe HUea B0 200 12 012

Yearlings (1-2) 0,39 Piedmont Corlp:)gtrjslgsutea (2)(1)2 8(1)3
05 Mountains COPOraLutea o0 o040

115,65 Coastal Plain CorE:trjs';:tea ;:gg 812 igg 81;

Adults(>2) 0,42 Piedmont Corﬁgtrjst:tea igi 8%
0,9 Mountains Cmﬁg{j Slgsu fea ;22 822
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Table 2. Model selection results using Akaike’s information criterion (AIC) for the effect of age and Furbearer Management Unit

(FMU) on corpora lutea and fetus counts for river otters (Lontra canadensis) in North Carolina, USA, during November-February

exp(—0.5*AAIC)

2009-16. Model weight = % exp(=0.5eAAIC)’

K= number of parameters.

Corpora lutea Fetuses
Model AIC AAIC Model weight K  Log like AIC AAIC Model weight K  Log like
Age + FMU  743.9481 0 0.999 5 -366.9740 776.8275 0 0.544 5 -383.4138
Age 757.4973 135 0.001 2 -375.7487 777.1839 0.3564 0.456 2 -385.592
FMU 785.0416 41.1 0 4 -388.5208 850.6437 73.8162 0 4 -421.3218
Null 797.6096  53.7 0 1 -396.8048 853.8446 77.0171 0 1 -424.9223




Table 3. Model-averaged coefficients for the effects of age (per year) and Furbearer Management Unit (FMU) on the corpora lutea

and fetus counts of river otters (Lontra canadensis) in North Carolina during 2009-2016.

Corpora lutea Fetuses
. . Unconditional Unconditional 95% . Unconditional Unconditional 95%
Variable Estimate . . . Estimate . . .
variance SE confidence interval variance SE confidence interval
Age 0.180 0.030 (0.121, 0.240) 0.256 0.037 (0.183, 0.329)
FMU (Coastal Plain) -0.3178 0.116 (-0.545, -0.090) 0.007 0.124 (-0.236, 0.250)
FMU (Mountain) 0.596 0.247 (0.112, 1.079) 0.536 0.263 (0.020, 1.052)
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Figure 1. Furbearer Management Units and river basins of North Carolina, 1978-2016.
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Figure 2. River otter (Lontra canadensis) trapping seasons from 1947 - present in North Carolina.
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Figure 3. Age distribution of harvested river otters (Lontra canadensis) during Period One (1978-1980) and Period Two (2009-2016)

in North Carolina.
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CHAPTER TWO

LEPTOSPIROSIS, PARVOVIRUS, AND TOXOPLASMOSIS IN THE NORTH
AMERICAN RIVER OTTER (Lontra canadensis) IN NORTH CAROLINA.

ABSTRACT

The North American river otter (Lontra canadensis; hereafter otter) is the largest
mustelid in North Carolina and was once extirpated from the central and western portions of the
state. Over time and after a successful reintroduction project, otters are abundant and occur
throughout North Carolina. However, there is a concern that diseases may have an impact on the
otter population, as well as other aquatic mammals, either through exposure to emerging
diseases, contact with domestic animals (e.g., domestic cats), or less robust condition of
individuals through declines in water quality. Therefore, we tested brain and kidney tissue from
harvested otters for leptospirosis, parvovirus, and toxoplasmosis. Leptospirosis and
toxoplasmaosis are priority zoonoses and are maintained by domestic and wild mammals.
Although parvovirus is not zoonotic, it does affect pets causing mild to fatal symptoms. Across
the 2014-2015 and 2015-2016 trapping seasons, we tested 220 otters (76 female, 144 male) using
real-time polymerase chain reaction (PCR) for leptospirosis, parvovirus, and toxoplasmosis. Of
the otters tested, 3 (1%) were positive for Leptospira interrogans, 41 (19%) were positive for
Parvovirus spp, and 53 (24%) were positive for Toxoplasma gondii. Although parvovirus and
toxoplasmosis are relatively common in North Carolina otters, the otter harvest has remained
steady and the population appears to be abundant and self-sustaining. Therefore, parvovirus and
toxoplasmosis do not currently appear to be negatively impacting the population. However,
subsequent research should examine transmission parameters between domestic and wild
species, and the sublethal effects of infection.

KEY WORDS
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disease, leptospirosis, Lontra canadensis, North Carolina, otter, parvovirus, toxoplasmosis

INTRODUCTION

The North American river otter (Lontra canadensis; hereafter otter) is the largest
mustelid inhabiting North Carolina. Otters were extirpated from the western Mountain Furbearer
Management Unit (FMU) and most of the central Piedmont FMU by the early 1900s (Figure 1),
with small surviving pockets in some areas (Wilson 1960). Otters were successfully
reintroduced to the Mountain FMU from the Coastal Plain FMU during the 1990s (Spelman
1998). After the population recovered, an otter trapping season was opened in the Mountain
FMU in November 2005, and bag limits were removed in November 2009. Today, otter
populations in all three FMUs are believed to be abundant and self-sustaining. The International
Union for Conservation of Nature (IUCN) Red List categorizes five of thirteen otter species as
endangered, with only L. canadensis listed as “least concern” and “stable” (IUCN 2017).
Studies of L. canadensis are important because they potentially provide information for
vulnerable otter species (Kimber and Kollias 2000).

The ITUCN and Natural Resources/Species Survival Commission (IUCN/SSC) Otter
Specialist Group does not outline disease as a direct threat to global otter populations (Foster-
Turley et al. 1990), however, it is vital to monitor diseases because they may regulate local
populations (Kimber and Kollias 2000). Although some diseases can have regulatory or even
catastrophic effects on populations (Anderson and May 1978, May and Anderson 1978), they
rarely cause extirpations or extinctions. Also, it is possible for a disease to weaken local

populations making them vulnerable to stochastic events (Lafferty and Gerber 2002).

32



Leptospirosis is a bacterial zoonotic disease caused by an aerobic spirochete (Leptospira
interrogans) and maintained globally by mammals, reptiles, and amphibians (Kimber and
Kollias 2000, Plank and Dean 2000, Bengis et al. 2004, Fouts et al. 2016). Infected animals shed
leptospires in urine (Plank and Dean 2000) allowing humans and wildlife species to encounter
leptospires through contaminated soil, water, animal tissue, or animal bites (Lecour et al. 1989,
Everard et al. 1995, Faisal et al. 2012). Because otters are semi-aquatic, infected water sources
associated with urban-suburban areas may be detrimental (Gautam et al. 2010). Additionally,
leptospirosis has been recorded in many mustelid species (Moinet et al. 2010), black bears
associated with urban areas (Sasmal et al. 2019), and is fatal to sea otters (Enhydra lutris) (White
et al. 2018).

Parvovirus spp. is a highly contagious genus of viruses identified in the 20" century that
spreads in felines, raccoons, arctic foxes, mink, and canines through direct contact with an
infected animal or by indirect contact with a contaminated object or feces (Parrish 1990,
Goddard and Leisewitz 2010). Although parvovirus is not zoonotic, it can cause mild to fatal
symptoms in pets and may affect reproduction (Parrish 1990, Kostro et al. 2014). Interestingly,
canine parvovirus (CPV) has had devastating effects on gray wolf populations (Mech and Goyal
1995, Mech et al. 2008) and is lethal to Asian small-clawed otters (Aonyx cinerea, Gjeltema et al.
2015). All parvoviruses are capable of infecting other species (Allison et al. 2014, Nituch et al.
2015).

Toxoplasma gondii is a single-celled parasite that causes the zoonotic disease
toxoplasmosis (Dubey 2008). Toxoplasmosis is globally distributed, but most hosts are
asymptomatic. Cats serve as the definitive host, but many species (e.g., mice, pigs, and geese)

are intermediate hosts (Dubey 1996, Cenci-Goga et al. 2011, Sandfoss et al. 2011). In humans,
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most cases are minor and typically mimic the flu, but toxoplasmosis can be dangerous and even
deadly in immunocompromised individuals (Dubey 1996). Toxoplasma gondii moves from its
feline host to other species most commonly through contact with meat or water contaminated by
cat feces (Vanwormer et al. 2013). Sea otter exposure to T. gondii may be at least partially
influenced by freshwater runoff (Miller et al. 2002, Conrad et al. 2005), and Shapiro et al. (2012)
determined that T. gondii was the cause of death in 14% of sea otters tested in central California.
Additionally, human population density has been connected to T. gondii rates in sea otters
(Gaydos et al. 2007) and southern river otters (Lontra provocax, Barros et al. 2018).

Detection of L. interrogans, Parvovirus spp., and T. gondii in otters may present a
possible transmission risk between wildlife, domestic species, and humans, and may be
indicative of exposure to aquatic mammals (e.g., muskrats, beaver, mink) and highlight the
impacts by humans and domestic species on wild populations. Therefore, our objective was to
survey the otter population to determine the prevalence of L. interrogans, Parvovirus spp., and T.
gondii across the three FMUs (i.e., Mountains, Piedmont, and Coastal Plain) and 14 river basins
of North Carolina. Additionally, we determined if sex or age were important covariates for

determining the probability of infection.

STUDY AREA

We conducted our study across the entire state of North Carolina. The North Carolina
Wildlife Resources Commission (NCWRC) divided the state into three Furbearer Management
Units (i.e., Mountain, Piedmont, and Coastal Plain). The FMUs followed physiographic regions
and county boundaries (Figure 1). However, because otters are semi-aquatic their territories are

linear and tend to correspond with river basin geographic features (Melquist and Hornocker
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1983, Melquist and Dronkert 1987, Reid et al. 1994, Sauer et al. 1999, Blundell et al. 2001) we

also focused our study on the 14 river basins that occur throughout North Carolina (Figure 1).

METHODS
Data Collection:

During the 2014-2015 and 2015-2016 regulated trapping seasons, we collected otter
carcasses from licensed trappers across North Carolina. Although there were variations in
trapping season dates across North Carolina, most of the otters we collected were trapped during
January and February. We recorded the date and location trapped including specific coordinates,
addresses, and/or a general description of the trap site location. General descriptions included
the county, locality, roads, and any prominent landmarks.

We froze all carcasses prior to necropsy. We extracted a lower canine tooth, which was
sent to Matson’s Laboratory (Manhattan, Montana) for cementum annuli aging (Stephenson
1977). We removed five grams of brain and two grams of kidney tissue which we froze until
analysis.

We used IDEXX Laboratories (Columbia, Missouri) for Real-Time Polymerase Chain
Reaction (PCR) testing of L. interrogans, Parvovirus spp., and T. gondii. We extracted total
nucleic acids from brains and kidneys with standard protocols using a commercially available
platform (One-For-All Vet Kit, Qiagen, Valencia, CA, USA). The canine parvovirus two and T.
gondii PCR assays were based on the IDEXX BioResearch proprietary service platform (IDEXX
Laboratories, Inc., Westbrook, ME, USA) and used a FAM/TAMRA-labeled hydrolysis probe.

Assays passed analytical validation by being tested in triplicate against dilutions of a

known positive control and a known positive clinical case sample with the following criteria
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being met and reproduced on different run days: amplification efficiency of 95-105%, linearity
over five points, calculated coefficient of variation (CV) of crossing points (Cp) equal to or
smaller than three percent, r? value equal to or larger than 0.993, signal to noise ratio of
fluorescent signal >10 and analytical sensitivity of ten molecules or less per PCR reaction.
Assays passed clinical validation by being tested against well-characterized clinical samples.
Sequence analyses were performed on select positive samples during assay validation to confirm
amplification of the intended target.

We used a hydrolysis probe-based real-time PCR targeting a housekeeping gene (18S
rRNA) to determine the amount of genomic DNA present in the test sample, confirm DNA
integrity, and ensure the absence of PCR inhibitors. We performed diagnostic real-time PCR
with a standard primer and probe concentrations using a commercially available mastermix
(LC480 ProbesMaster, Roche Applied Science, Indianapolis, IN, USA) on a commercially
available real-time PCR platform (Roche LightCycler 480). Because brain and kidney tissues
are suited for individual diseases and often used in the literature for disease evaluation, we
considered specimens positive for a disease if either tissue sample was positive.

Data Management and Modeling:

We used the SAS GENMOD procedure to predict the maximum likelihood of an otter
being positive for the disease using logistic regression in a generalized linear model (SAS
Institute, Inc, Cary, NC, USA). We treated age (0-13 years old based on cementum annuli) as a
numeric variable with sex, river basin, and FMU as classification variables. All ages were
assigned based on a date of birth of 1 April annually. Age classifications were assigned by year
up to year four, after which all otters age four or greater were combined into a single age class.

We limited our candidate model set to four a priori covariates to avoid including spurious effects.
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We used Akaike’s Information Criterion (AIC) to assess model weights and rank candidate
models (Burnham and Anderson 2002). We developed relative support for the models by using
Akaike weights and then calculated the unconditional variance estimates with their associated
95% confidence intervals (Burnham and Anderson 2002, Anderson 2008). We ignored non-
informative parameters within two AAIC units of the top model (Arnold 2010).

We used indicator kriging to predict the probability of testing positive for Parvovirus spp.
and T. gondii throughout North Carolina. We created the kriging models in ArcGIS 10.3 with
the Geostatistical Analyst Wizard (Esri, Redlands, CA, USA). We set our threshold value to
zero and optimized the semivariogram. We used the standard neighbor type with eight sectors.
For parvovirus, we used a maximum of ten neighbors and a minimum of three neighbors, while

for T. gondii we used a maximum of 5 neighbors and a minimum of two.

RESULTS

We tested 132 (49 female, 83 male) otters from the 2014-2015 season and 88 (27 female,
61 male) from the 2015-2016 season, collected from over 50 trappers and fur dealers. Of those,
three (1%) were positive for L. interrogans, 41 (19%) were positive for Parvovirus spp, and 53
(24%) were positive for T. gondii (Table 1). Due to low overall prevalence (1%) we did not
model L. interrogans further. Parvovirus spp. prevalence was highest in yearling otters (age
class = 1, 22%, Table 2), highest in the Coastal Plain (24%) and not detected in the Mountains
(0%; Table 2). The Lower Pee Dee (35%, Table 3) had the highest prevalence of Parvovirus ssp.
while the lowest was in the French Broad-Holston, Middle Tennessee-Hiwassee, and Roanoke
river basins (0%, Table 3). Toxoplasma gondii prevalence ranged from 17% to 43% among

FMUSs and was highest in females (34%) and individuals four years old or older (33%, Table 2).
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The Upper Pee Dee (40%) had the highest prevalence of T. gondii among river basins while no
positive samples were recorded in the Middle-Tennessee/Hiwassee basin (Table 3).

We documented the significant influence of age and river basin on the occurrence of
Parvovirus spp. (Tables 4, 5), and age, sex, and FMU for T. gondii among the otter population in
North Carolina. Of the 15 models we ran for Parvovirus spp., four were within two AAIC and
only explained ~50% of the variation; all models included age, river basin, and/or sex (Table 4).
Therefore, we model averaged which indicated the Albemarle, Cape Fear, Neuse, Pamlico, and
Upper Pee Dee river basins were significant predictors, whereas age and sex were not significant
predictors (Table 5). The best model for T. gondii positive otters included FMU, sex, and age
and held 79.4% of the model weight.

For the indicator kriging analyses, Parvovirus spp. and T. gondii overlapping points were
averaged together, resulting in sample sizes of 97 for each disease analyzed. The standardized
mean and the standardized root mean square (RMSS) for Parvovirus spp. (0.0018, 1.0373,
respectively) and T. gondii (-0.0176, 0.0.9880, respectively) demonstrated the indicator kriging
had a high degree of model performance. Parvovirus spp. appeared to be ubiquitous and at low
levels across North Carolina with the lowest prevalence in the Mountain FMU, but with a
primary probability of occurrence of 19% across North Carolina (Table 3, Figure 2).
Toxoplasma gondii was present at relatively high levels throughout North Carolina with high
prevalence areas in the Southeast Coastal Plain and eastern part of the Mountain FMU and with a

primary probability of occurrence of 24% for all of North Carolina (Table 3, Figure 3).
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DISCUSSION

Our study was one of the first to examine diseases in otters in North Carolina. We
determined that leptospirosis occurred at low levels throughout North Carolina. Because L.
interrogans can spread through contaminated soil or water and stays in the soil of an infected
area for months or longer (Thibeaux et al. 2017), the potential of zoonotic exposure and impact
on aquatic ecosystems is a primary concern. Aquatic and semi-aquatic species such as seals
(Pusa capsica), mink (Neovison vison), and nutria (Myocastor coypu) have tested positive on
multiple continents (Aviat et al. 2009, Barros et al. 2014, Vein et al. 2014, Namroodi et al.
2018), and leptospirosis is lethal to sea otters (White et al. 2018). Although our low prevalence
is encouraging, it may be explained by the difficulty of isolating L. interrogans. However,
Shearer et al (2014) detected higher prevalence rates using similar methods. We suggest
continued monitoring of prevalence rates in aquatic mammal species in North Carolina along
with the further study of the transmission routes and effects on various wild aquatic species.

We documented Parvovirus spp. in 19% of the samples tested. Although no otter
mortality attributed to Parvovirus spp. has been documented in North Carolina there have been
fatalities for otters (Famini et al. 2013) and Asian small-clawed otters (Aonyx cinereal, Gjeltema
et al. 2015) recorded. While there are no overarching relationships between anthropomorphic
development and disease prevalence (Brearley et al. 2013), the dispersion of some diseases that
are spread by direct contact may be aided by the disturbance associated with higher human
density, development, agriculture, domestic animals, and pest populations (Gaydos et al. 2007).
Specifically, canine parvovirus two (CPV2) is more common in rural areas, often due to the
lower likelihood of domestic dogs being vaccinated (Sepulveda et al. 2014, Zourkas et al. 2015,

Curi et al. 2016). The Santee and Lower Pee Dee river basins are largely agricultural, which
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may explain the higher prevalence detected in our study and how the model showed other basins
significantly lower in prevalence. Interestingly, adult dogs are less affected by parvovirus due to
environmental exposure, while weaned puppies less than six months old are usually the most at-
risk group (Goddard and Leisewitz 2010). In our study, yearling otters had the highest
prevalence, possibly due to greater rates of dispersal, encountering multiple latrine sites, and
coming into contact with more otters and other species (Boyle 2006). Because of the 41
specimens that tested positive only ten were positive for in both samples, we suggest continuing
to test both kidney and brain tissue for parvovirus.

We documented T. gondii in 24% of the samples tested and determined that FMU, sex,
and age were significant predictors of T. gondii in North Carolina otters. The Mountain FMU
had the highest prevalence of T. gondii at 43%, possibly due to the small sample size and limited
distribution across the FMU. Interestingly, seroprevalence was 45% in Coastal Plain FMU otters
during the relocation project in 1996 (Tocidlowski et al. 1997). Those otters formed the base of
the Mountain FMU population which may have contributed to the high prevalence we observed.
In our study, the prevalence in the heavily populated Piedmont FMU and Upper Pee Dee river
basin was significantly higher which was not unexpected due to the established link between
anthropomorphic development and toxoplasmosis (Miller et al. 2002, 2008, Conrad et al. 2005,
Vanwormer et al. 2013, Barros et al. 2018). Additionally, females and older otters were more
likely to test positive which is supported by research indicating that immunocompromised
individuals (e.g., pregnant females, older) were at greater risk of contracting T. gondii (Dubey
1996, Barros et al. 2018). We observed higher probabilities of female and older otters
contracting toxoplasmosis across all three FMUs of North Carolina. While there have been no

recorded toxoplasmosis related otter mortalities in North Carolina, sea otter mortalities have
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been linked to T. gondii in California (Cole et al. 2000, Shapiro et al. 2012, White et al. 2018).
While direct mortalities are important there may be sublethal effects of toxoplasmosis, such as
litter failure, that are difficult to document (Cenci-Goga et al. 2013, Formenti et al. 2015). We
encourage future research to focus on the sub-lethal effects of T. gondii on wild otter
populations.

Aquatic ecosystems offer a plethora of opportunities for disease to spread and thrive
(Johnson and Paull 2011). While river otters seem to be robust to diseases such as leptospirosis,
parvovirus, and toxoplasmosis, other species may not be. Other furbearers in particular such as
mink, muskrats, and beaver remain at risk (Smith and Frenkel 1995, Forzan and Frasca 2004,
Jordan et al. 2005) because drainage focuses exposure towards them (Miller et al. 2002, Shapiro
et al. 2012, Ahlers et al. 2015). As an apex predator otters are exposed to diseases not only
through the environment, but also through their diet (Krusor et al. 2015, Barros et al. 2018). This
makes them an ideal sentinel species and suggests that when otter populations test positive for
these diseases other aquatic species in the same areas will also, particularly in areas influenced
by the human population.

As human encroachment expands across the landscape, development brings activities,
domestic animals, and invasive species that enhance the exposure of wild populations to
pathogens (Hess 1994, McCallum and Dobson 2002, Gaydos et al. 2007, Brearley et al. 2013).
Our research established baselines that can be used for comparisons to future surveys to monitor
the spread of leptospirosis, parvovirus, and toxoplasmosis. While traditional research concludes
that zoonoses pass from wild populations to domestic animals and humans (Bengis et al. 2004,
Shearer et al. 2014), other studies have determined that wild populations away from human

development had lower or no prevalence of the same diseases (Gaydos et al. 2007, Plowright et
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al. 2008, Brearley et al. 2013, Becker et al. 2015). As the human-wildlife interface continues to
expand, diseases being passed from humans and domestic animals to wild populations and vice-
versa are of increasing concern for all three groups.

Disease transmission is often complex and difficult to determine, requiring new methods
and approaches (McCallum and Dobson 1995, Plowright et al. 2008, Langwig et al. 2015).
While aquatic ecosystems provide a hub for pathogens to be encountered and spread (Gortazar et
al. 2007, Johnson and Paull 2011), otters may provide crucial data for the management and
conservation of other species. As development and habitat loss increase and force more human-
wildlife interactions, subsequent research should examine transmission parameters between
domestic and wild species and the sublethal effects of infection. Additionally, future surveys
should further elucidate the role of agricultural development and human densities on disease

prevalence in river otters across different regions and climes.
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