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Lecture 9:  Genetic Correlations and Correlated Response 
 

Background 

Phenotypic values of different traits in the same trees are often correlated, such as height and diameter. 

Environmental factors and genetic effects are two reasons for correlations. Similar to partitioning 

phenotypic variance, we can decompose phenotypic correlation (rP) into its genetic (rA) and 

environmental (rE) components. 

 

rP = rA + rE  

rP = covPxy / [σ
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 Py ]
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2
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where covAxy is genetic covariance, covExy is environmental covariance, σ
2 

_subscripts are additive 

genetic or environmental variances for traits X and Y. Genetic correlations can arise from two causes;  

(i) Pleiotropy: One gene or several genes may influence multiple traits, (ii) Gametic phase 

disequilibrium between genes affecting different traits. A set of closely linked genes present on one 

chromosome tend to be inherited together (not easily separable by recombination), i.e. gene A is 

affecting Trait X, gene B affecting trait Y only. If two genes are in linkage disequilibrium, a genetic 

covariance may arise between traits X and Y. This could be temporary when there is random mating. 

 

We are already familiar with the decomposition of genetic variances for traits X and Y. Recall that 

genetic variance for traits X and Y can be portioned as follows: 
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Ignoring linkage disequilibrium, we can partition genetic covariances into components the same way 

as we did for genetic variances:  

 

 covGxy = covA(1,2) + covD(1,2)+ covAA(1,2) + covAD(1,2) + covDD(1,2) +… 
 

Where, 1 and 2 are two loci, covA is additive, covD is dominant genetic covariance etc. If additive and 

dominance genetic covariances can be estimated, then rA, rD and rE can also be estimated.  
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covP = rP Px Py 
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covA = rA Ax Ay 
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rE = covE / [σ
2

Ex σ
2

 EPy ]
1/2

 

covE = rE Ex Ey  

 

covP = covA  + covE 

 

rP Px Py = rA Ax Ay  +  rE Ex Ey 
 

Phenotypic correlation is function of genetic and environmental correlation. The expression can be 

simplified by substituting the square root of variances as suggested by Walsh.  
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The square root of additive genetic variance ( A) is the product of square root of heritability (h) and 

the square root of phenotypic variance ( P).  
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The 
2

e is the remaining ratio of the total phenotypic variance after subtracting heritability.  In another 

word, 
2

e is the ratio of environmental variance and phenotypic variance. Phenotypic variance can be 

formulated as the product of e and P.  

 

Phenotypic correlations can be written as the function of heritabilities, genetic and environmental 

correlations.  
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rP = rA hx hy  +  rE [(1- h
2
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2
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How phenotypic correlations change as the heritabilities increase or decrease? 

 

Why rA is important in quantitative genetics and in breeding? 

 Use for indirect selection and predict correlated response (genetic gain). In some cases it could 

be expensive to measure a trait directly. If Y is an easily observed trait that is highly correlated 

with X, then we can improve Y instead of X, and hope to make positive change in X in the 

population. 

 Develop selection indices to select for multiple traits simultaneously  

 Determine extend of genotype-environment interaction to develop breeding strategies.  

 Understand evolutionary process of traits 
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Regression of family means  

If it is difficult to estimate rA and test its significance, you can replace rA with a correlation of family 

means. The rationale behind this is, if we keep increasing the number of measured individuals for a 

family, then the sampling error of the mean becomes so small that the phenotypic mean would be 

approximately equal to genetic mean. This approach could be biased if the heritabilities of two traits 

are low. See Lynch and Walsh 1998, p 636 for more details. 
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Where,   

),cov( yx zz = covariance between family means for traits X and Y,  

σ
2

zx and σ
2

zy = family variances for traits X and Y,  

φ (phi) =2Θ(n-1) and 2Θ  = coefficient of relationship (i.e, 0.25 for half-sibs and 0.5 for full-sibs), n is 

the number of progeny, 

rP is phenotypic correlation, hx and hy are square-root of heritabilities of traits X and Y. 

 

 If heritability of X and Y are 1, then family-mean correlation is an unbiased estimate of genetic 

correlation (that is unlikely) 

 If heritabilities are moderate i.e., 0.5, then family size should be large, 

 The advantage of family-mean correlation is that it is a true product-moment correlation. It is 

always estimated between theoretical limits (-1, 1). More importantly, it is significance can be 

easily tested using standard tables of critical values.   

 

 

The precision of genetic correlation (rA) 

Precise estimation of rA requires many families each with a large number of progenies. The following 

formulas are approximate to estimate variation around rA. When the population size small then the 

standard errors of rA should be used with cautious because we do not know its distribution. With the 

increased power of computing, resampling methods have become available to better estimate 

approximate distributions of correlations. 

 

1-An approximate standard error of genetic correlation (Falconer 1996):  
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2-Delta method is considered a better way to estimate variance of ratios for unknown distributions 

(Lynch and Walsh 1998). See Appendix 1 in Lynch and Walsh for more details about the Delta 

method. 
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σ
2

- = Variance,  

var(σ
2

-) = Variance of variance,   

σxy = Covariance 

σ
2

xy = Squared covariance, 

var(σxy) = Variance of the covariance 

cov(σ
2

xσ
2

y) = Covariance between the variances of X and Y 

cov(σ
2

xσxy ) = Covariance between the variance of X and the covariance,  

cov(σxyσ
2

y ) = Covariance between the covariance and the variance of Y 

 

 

Correlated response and indirect selection 

The mean of trait X in a breeding population can change in two ways:  

1) as a direct response to selection on X (Rx). The response (Rx) in directly selected character X is; 
 

Rx = ix hx Ax  

= ix ( Ax / Px) Ax  

= ix 
2

Ax / Px  
 

2) as a correlated, indirect, response to direct selection on Y (CRx). When X and Y are genetically 

correlated, selection on X will result in change in Y too. Such a change in the unselected trait (Y) is 

correlated response. The response to selection of trait X is (by definitation) the mean breeding value of 

selected individuals. Thus, the change in trait Y in response to selection on X is the regression of 

breeding value of Y on the breeding value of X (Walsh lecture notes, page 13, Falconer and MacKay 

page 317). The slope (b) of the regression is; 

 

bAx|Ay = covA / σ
2

Ax 

= [rA Ax Ay] / σ
2

Ax                                  (remember covA = rA Ax Ay) 

= rA   Ay / σAx 

 
The regression of breeding values of Y on breeding values of X; 

 

Y = bAx|Ay X  

Y = rA   Ax/σAy X  

 
 

CRy =  b Rx  

= b [ix hx Ax] 

= (rA   Ay / σAx ) [ix hx Ax] 

= ix hx  rA Ay         (substituting Ay with hy Py gives) 

= ix hy hx rA Py    
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The hxhyrA is the co-heritability of trait X and Y. Where, ix is the selection intensity.  

 

 

Selection efficiency  

If traits X and Y are genetically correlated, and if trait X is difficult, expensive and time consuming to 

measure, then we may make selection on Y to improve the mean response in X. Sometimes indirect 

selection of X could be more efficiently than direct selection. 

 

CRx = iy hy rA Ax,  Rx = ix hx Ax 

 
 

E = CRx / Rx 

 = iy hy rA Ax   /  ix hx Ax   (remember that hx = Ax  / Px ) 

 = iy hy rA  / ix hx     (assuming iy = ix) 

 = rA hy / hx    

 

Selection efficiency E can be greater than 1 if hy > hx and if rA is high.   

 

Example: (Isik and Li 2003. Canadian J of Forest Research 33:2426-2435).Wood density of trees was 

measured indirectly using a drilling tool called the Resistograph. The actual of wood density was also 

measured. The objective of the research was to develop indirect efficient wood density assessment of 

trees in tree improvement programs. Researchers estimated the following genetic parameters: h
2

i (density) 

= 0.61, h
2

i (resi) = 0.29, rA=0.95, h
2

f (density) = 0.81, h
2

f (resi) = 0.79 

Assuming the same selection intensity for two methods, calculate efficiency of indirect selection both 

for individual tree and for family means.  

Solution: 
Etree =  0.95*sqrt(0.29) / sqrt(0.61) = 0.655 

Efamily =  0.95*sqrt(0.79) / sqrt(0.81) = 0.94 

 

 

Multivariate trait selection response 

Selection response for one trait is  

R = i h
2
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2
 S  
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Where, S is the selection differential. In multi trait selection there are multi genetic and phenotypic 

variances. Suppose there are n traits, their selection differentials S would be a vector. For two 

characters; 
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Where G is the additive genetic variance-covariance matrix of two traits, P is the phenotypic variance 

and covariance matrix. The response of selection for multi traits becomes;    

 

R = GP
-1

 S  

 

 

Decomposition of mean cross-products using ANOVA approach 

Just like decomposition of observed phenotypic variance into causal components we can do the same 

for phenotypic covariance. This time we use cross-products [ )yy)(xx(CP ii ] between two 

traits. An example from half-sib families, single site, single-tree plots.  

 

---------------------------------------------------------------------------------------- 

Source   df  MCP  Exp. Mean Cross-Products  

--------------------------------------------------------------------------------------- 

Rep  b-1  MCPb  - 

Fam  f-1  MCPf  σe + bn σfxy   

Error  fb(n-1)  MCPe  σe  

-------------------------------------------------------------------------------------- 
 

Genetic model: 

------------------------------------------------------------------- 

Component σA σD σAA σAD σDD σE 

------------------------------------------------------------------- 

σfxy  1/4 0 1/16 0 0 0 

σwxy  3/4 1 15/16 1 1 1 

------------------------------------------------------------------- 

 

Covariance explained by family effect is 0.25 of the additive genetic covariance.  

σfxy = (MCPf – MCPe) / nb 

σfxy =1/4σA + 1/16σA... 

 

Genetic correlation:   

rA = σfxy / [σ
2

fxσ
2

fy]
1/2 

 

1- The Variance of MS:   
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Var(MSf) = 2MS
2

f / (dff+2) 

 

2- The Variance of MCP:  

Var(MCPf) = [(MSfx,MSfy) + MCP
2

fxy]  / (dff+2) 

 

3- The Covariance of MSx and MSy:  

Cov(MSfx,MSfy) = (2MCP
2

gxy) / (dff+2) 

 

4- The Covariances of MS and MCP: 

Cov(MSfx,MCPfxy) = (2MSfx*MCPfxy) / (dff+2) 

Cov(MSfy,MCPfxy) = (2MSfy*MCPfxy) / (dff+2) 

 

The general formula for the variance of rA 

Var(rA) = (rA)
2
 [var(σ

2
x) / 4(σ

2
x)

2
   + var(σxy)/(σxy)

2
 

+ var(σ
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xσxy 

- 2cov(σ
2

yσxy)/2σ
2

yσxy] 

SE(rA)= [var(rA)]
1/2

 

 

An example from factorial mating design: 

 

Linear Model: Yijlk = mu + Rl + Fi + Mj + FMij + eijlk 

 

----------------------------------------------------------------------------------------------------------- 

Source  df MCP Expected    MCP    Estimate  

----------------------------------------------------------------------------------------------------------- 

Rep  r-1 MCPr -       - 

F  f-1 MCPf σe + nb σfm + bnm σf    σf= (MCPf - MCPfm) / bnm 

M  m-1 MCPm σe+ nb σfm + bnf σm    σm= (MCPm- MCPfm) / bnf 

FM (f-1)(m-1) MCPfm σe + nb σfm    σfm= (MCPfm- MCPe) / bn 

Err subt.  MCPe σe  

TOT   rfm(n-1) 

----------------------------------------------------------------------------------------------------------- 
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Genetic model: 

------------------------------------------------------------------- 

Components σA σD σAA σAD σDD σE 

------------------------------------------------------------------- 

σf  1/4 0 1/16 0 0 0 

σm  1/4 0 1/16 0 0 0 

σfm  0 1/4 1/8 1/8 1/16 0 

σw  1/2 3/4 3/4 7/8 15/16 1 

------------------------------------------------------------------- 

 

Genetic correlations: 

Female  rA = σfxy / [σ
2

fxσ
2

fy]
1/2

   

Male   rA = σmxy / [σ
2

mxσ
2

my]
1/2 

 

Combined Female and Male:  

rA = (σfxy+σmxy) / [(σ
2

fx+σ
2

my)(σ
2

fx+σ
2

my)]
1/2 

 

Dominance genetic correlation:   

rD = σfmxy / [σ
2

fmxσ
2

fmy ]
1/2

 

 

Calculation of Genetic Correlations Using SAS Procedures 

(1) Creating a dummy variable and running univariate models 

Estimation of genetic variances for traits X and Y is straightforward using univariate models. To obtain 

genetic covariance between two traits we can create a dummy variable. Remember that the variance of 

a summation of two traits is equal to their variances, plus 2 times of covariance: 

 

var(x+y) = varx + vary + 2covxy 

 

To obtain 2 covxy, we need to create a dummy variables as Z = X+Y  . Run a univariate model for 

dummy Z and obtain family variance. Using genetic variances from univariate analysis of X, Y and Z, 

we can easily derive covxy. 

 

σxy = [σ
2

fz - (σ
2

fx+ σ
2

fy)] / 2 

 

 
/* Creating a dummy variable */ 

 

data C;  

  set VP (where=(test=9801)); 
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   HTVAL=Height4+VALUE ; * This is our dummy variable ; 

run; 

 

 
/* Using VARCOMP procedure to obtain family variances for x, y and dummy */ 

 

proc varcomp data=c method=reml ; 

      class rep family; 

      model ht value htval= rep family/fixed=1; 

run; 

 

Partial OUTPUT  

Trait: Height4  
                             Variance 

                             Component        Estimate 

 

                             Var(rep)        263.024 

                             Var(family)     136.7 

                             Var(Error)     1182.0 

 

                     Asymptotic Covariance Matrix of Estimates 

 

                               Var(rep)      Var(family)       Var(Error) 

           Var(rep)              4517.3          6.69499        -13.22934 

           Var(family)          6.69499        566.46176        -36.61546 

           Var(Error)         -13.22934        -36.61546        932.59003 

 

 

Trait: VALUE 
                             Variance 

                             Component        Estimate 

 

                             Var(rep)          6.23151 

                             Var(family)       1.697 

                             Var(Error)       22.04402 

 

                     Asymptotic Covariance Matrix of Estimates 

 

                               Var(rep)      Var(family)       Var(Error) 

           Var(rep)             2.47752        0.0032394       -0.0049609 

           Var(family)        0.0032394          0.11056         -0.01262 

           Var(Error)        -0.0049609         -0.01262          0.32819 

 

 

Trait: HTVAL 
                             Variance 

                             Component        Estimate 
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                             Var(rep)        331.25648 

                             Var(family)     153.1 

                             Var(Error)         1421.7 

 

                     Asymptotic Covariance Matrix of Estimates 

 

                               Var(rep)      Var(family)       Var(Error) 

           Var(rep)              7143.3         14.16394        -20.99875 

           Var(family)         14.16394        746.33177        -55.60797 

           Var(Error)         -20.99875        -55.60797           1371.4 

 

 

 

Genetic covariance between HT and VALUE: 

covf =[153.1- (1.697+136.7)] / 2 = 7.35 

 

Genetic correlation between HT and VALUE: 

rA= 7.35 / (1.697*136.7)
1/2

 =0.48 

 

This method may give rA outside of theoretical values, because it involves genetic variances that are 

estimates and are associated with standard errors. 

 

 

 

(2) Estimation of rA with MANOVA option in GLM 

 

 

proc glm data=A ; 

      class rep family; 

      model height4 value = rep family; 

  random family ; 

      manova h=family / printh printe; 

run; 

 

The program by default produces univariate analysis of variance for each trait. 

 
                                 The GLM Procedure 
 

Dependent Variable: HT 
                                        Sum of 

Source                  DF         Squares     Mean Square    F Value    Pr > F 

 

Model                  153     1258886.873        8228.019       7.06    <.0001 



Page 11 of 23 

Fikret Isik, FOR 728, Quantitative Forest Genetics Course Notes 

Error                 2948     3434099.999        1164.891 

 

                 R-Square     Coeff Var      Root MSE       ht Mean 

                 0.268249      18.57571      34.13051      183.7373 

 

 

Source                  DF     Type III SS     Mean Square    F Value    Pr > F 

 

rep                     34     755153.4671      22210.3961      19.07    <.0001 

family                 119     523218.7528       4396.7962       3.77    <.0001 

 

 

 

Dependent Variable: value 
 

                                        Sum of 

Source                 DF         Squares     Mean Square    F Value    Pr > F 

 

Model                 153     26720.40131       174.64315       8.17    <.0001 

Error                2948     62997.98228        21.36974 

 

                 R-Square     Coeff Var      Root MSE    value Mean 

 

                 0.297825      27.77316      4.622741      16.64464 

 

 

Source                 DF     Type III SS     Mean Square    F Value    Pr > F 

 

rep                    34     19445.94572       571.93958      26.76    <.0001 

family                119      7548.17003        63.43000       2.97    <.0001 

 

 
 

     Source                  Type III Expected Mean Square 

 

     rep                     Var(Error) + Q(rep) 

     family                  Var(Error) + 25.761 Var(family) 

 
 

The PRINTE option in the MANOVA statement displays the elements of the error matrix, also called 

the Error Sums of Squares and Cross-products matrix. The diagonal elements of this matrix are the 

error SS from the corresponding univariate analyses. 

 
 

                             E = Error SSCP Matrix 
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                                    height4             value 

 

                  height4      3434099.9988      346578.40021 

                  value        346578.40021      62997.982279 

 

 

 Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r| 

 

                    DF = 2948        height4          value 

                    height4         1.000000       0.745129 

                                                     <.0001 

                    value           0.745129       1.000000 

                                      <.0001 

   

The PRINTE option also displays the partial correlation matrix associated with the E matrix. In this 

example, HT and the VALUE are highly correlated. 

 

 

The PRINTH option produces the SSCP matrix for the hypotheses being tested (family). The diagonal 

elements of this matrix are the model sums of squares from the corresponding univariate analyses.  
 

          H = Type III SSCP Matrix for family 

   ht           value 

 

           ht         523218.75     52648.56 

           value      52648.5       7548.17 

 

 

 

 

Using the above outputs we can easily derive genetic covariance between two traits and their genetic 

variances. Family=120, Rep=35. 

--------------------------------------------------------------------------------------------- 

Source  df  SSCP  MCP Expected MCP Estimate 

-------------------------------------------------------------------------------------------- 

Rep         r-1    ----  ---      ----   

Family  119  52648  442 σe + bn σf     12.5 

Error       2948 346578 118  σe  

------------------------------------------------------------------------------------------- 

 

 

The MCP of Family: 

MCPf =SSCP / df =52648/119 = 442 
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The variance of family MCP: 

Var(MCPf) = [(MSfx*MSfy) +MCPfxy* MCPfxy] / (DFf+2) 

Var(MSPf) = [(4397*63) +(442*442)] / (119+2)= 278625 

SE of Family MCPf = (278625)
1/2

  = 527 

 

Genetic covariance between HT and VALUE:   covf  = (442-118) / 26= 12.5 

Genetic variance for HT:       σ
2

fHT  = (4397-1165) / 26= 124 

Genetic variance for VALUE:     σ
2

fVALUE = (63-21) / 26= 1.615 

Genetic Correlation Between HT and VALUE: rA = 12.5/(124*1.615)
1/2

 =0.88 

 

 

 

(3) Multivariate model with SAS Proc Mixed  

 
 

/* Multivariate Model for Single site */ 

ods listing exclude solutionf solutionr ; 

ods html exclude solutionf solutionr ; 

 

 proc mixed data=A covtest asycov scoring=1; 

   Class trait rep family tree; 

   model y =trait rep ; 

     random trait /type=toep(1) sub=family g gcorr; 

     repeated /type=toep(1) sub=family*tree; 

 ods output covparms=_varcomp asycov=_cov ; 

run; 

 

A partial output from analysis: 
                               Estimated R Matrix 

                                  for family 1-1518 

 

                             Row        Col1        Col2 

                               1      0.7243      0.5410 

                               2      0.5410      0.7449 

 

 

                               Estimated R Correlation 

                              Matrix for family 1-1518 

 

                             Row        Col1        Col2 

                               1      1.0000      0.7365 



Page 14 of 23 

Fikret Isik, FOR 728, Quantitative Forest Genetics Course Notes 

                               2      0.7365      1.0000 

 

 

                                 Estimated G Matrix 

           Row    Effect    family           trait        Col1        Col2 

             1    trait     1-1518           1         0.07720     0.05904 

             2    trait     1-1518           2         0.05904     0.05781 

 

 

                           Estimated G Correlation Matrix 

           Row    Effect    family           trait        Col1        Col2 

             1    trait     1-1518           1          1.0000      0.8838 

             2    trait     1-1518           2          0.8838      1.0000 

 

 

                          Covariance Parameter Estimates 

 

                                              Standard         Z 

       Cov Parm    Subject        Estimate       Error     Value        Pr Z 

       UN(1,1)     family          0.07720     0.01375      5.62      <.0001 

       UN(2,1)     family          0.05904     0.01144      5.16      <.0001 

       UN(2,2)     family          0.05781     0.01119      5.17      <.0001 

 

 

 

Example for half-sib families: 

 

SAS Proc Mixed can be used to estimate genetic correlations among traits and their standard errors. 

Let’s say we have 120 half-sib families of loblolly pine and they were tested at two locations using 

RCB design single-tree plots. Two traits were measured e.g., var1 var2. We want to estimate genetic 

correlation between var1 and var2. The original data are as follows; 

 
        data B; 

        input location $ rep family $ tree var1 var2 ; 

        datalines ; 

        AL 1 F1 1 128 214 

        AL 1 F1 2 107 165 

        AL 1 F1 3 187 162 

        . . . . . 

        ; 

 

    For bivariate/multivariate analysis, a special data structure is needed. First, variables for each 

individual tree should be put into one column and must be named as Y . Second, a dummy variable 

named TRAIT needs to be created. 

 
    data A; 
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        set B(rename=(var1=y)) 

        b(rename=(var2=y)); 

        if var1=. then trait=1 ; 

        if var2=. then trait=2 ; 

        drop var1 var2; 

        run; 

 

 

        When a portion of the data is printed using the Proc PRINT of SAS, the output will be as follows: 

 
title 'Arranged data'; 

proc print data=A (obs=5);  

run; 

 

        Partial arranged data output 
 

      Obs site block family tree height fork color qual fork4        y trait 

 

        1 9801    1     1    34    202    0    2     3    0     202.00   1 

        2 9801   10     1    70    140    0    2     2    0     140.00   1 

        3 9801   11     1    27    164    1    2     3    1     164.00   1 

        4 9801   12     1    65    166    0    2     2    0     166.00   1 

        5 9801   13     1     2    198    1    2     2    1     198.00   1 

        6 9801   14     1    20    152    1    2     2    1     152.00   1 

 

Each tree now has two observations rather than one, e.g. tree 34 of family 1-1518 has 4.91 and 3.06. 

For simplicity, I included 2 traits; however, you may include 3 or more traits. 

 

The following code fits a mixed model to data. 

 

 
 

proc mixed data=A covtest asycov scoring=1; 

   Class trait site block family tree; 

   model y = trait site block(site) ; 

     random trait /type=un subject=family g gcorr; 

     repeated /type=un  subject=family*site*tree r rcorr; 

ods output covparms=_varcomp asycov=_cov ; 

run; 

 

 

1. The fixed effect class variables [TRAIT, SITE, BLOCK(SITE)] are listed after the dependent 

variable Y. We want to model different means for the multivariate observations, hence the 

inclusion of TRAIT in the MODEL statement. 

2. The variables TRAIT (which is a dummy), FAMILY and FAMILY*SITE*TREE are random. 
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3. The G option requests genetic covariance-variance matrix and the GCORR requests genetic 

correlation matrix between two traits. 

4. The REPEATED statement here is used to define error (R) variance-covariance structure 

(Var(y)=ZGZ
T
+R). TYPE=UN specifies that the error variance and covariance matrix is 

unstructured. We use the SUBJECT= option to instruct the procedure that which sets of 

observations from this subject are correlated. All observations having the same level of the 

GROUP effect have the same covariance parameters. The TYPE= options defines the 

relationships between these selected set of observations. In other application, such 

heterogeneous models, the REPEATED statement allows fitting heterogeneous variance 

models using the GROUP option. For example, if there is a large difference between two sites, 

then, instead of using transformations, we can fit a heterogeneous variance model to the data as 

REPEATED / GROUP=site. Here the repeated statement replaces the RANDOM statement.  

5. The R matrix requests the first block diagonal matrix and RCORR requests within family 

correlation matrix. The r requests that blocks of the estimated R matrix be displayed. The first 

block determined by the SUBJECT= effect is the default displayed block. RCORR=value-list 

produces the correlation matrix corresponding to blocks of the estimated R matrix. Complete 

independence is assumed across subjects; therefore, the SUBJECT= option produces a block-

diagonal structure in R with identical blocks. The TYPE=UN (unstructured) option is useful for 

correlated random coefficient models. 

6. Finally, two output files (variance components, covariance matrix) were requested using the 

ODS statements of SAS. Here, COVPARMS is the SAS table name of the variance 

components; _VARCOMP is a given name (you may give a different name). ASYCOV is the 

variance-covariance matrix of variance components. 

7. The TYPE=UN option requests an unstructured covariance matrix for each SUBJECT= 

FAMILY. This structure does not make any assumptions of covariances. The covariance matrix 

for three traits would be as follows: 

 

    Cov = { 11   12    13 

                 12    22    23 

                 13    23    33}; 

 

Depending on the data, you may fit different covariance structures, such as compound symmetry (CS) 

or autoregressive (AR) etc. 

 

    A partial output of the Mixed Procedure is given below: 

 
                              The Mixed Procedure 

 
 

                               Model Information 

 

             Data Set                     WORK.A 

             Dependent Variable           y 

             Covariance Structure         Unstructured 

             Subject Effects              family, site*family*tree 

             Estimation Method            REML 
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             Residual Variance Method     None 

             Fixed Effects SE Method      Model-Based 

             Degrees of Freedom Method    Containment 

 

 

                            Class Level Information 

 

               Class     Levels    Values 

 

               trait          2    1 2 

               site           4    9801 9802 9803 9804 

               block         35    1 2 3 4 5 6 7 8 9 10 11 12 13 

                                   14 15 16 17 18 19 20 21 22 23 

                                   24 25 26 27 28 29 30 31 32 33 

                                   34 35 

               family       120    1 2 3 4 5 6 7 8 9 10 11 12 13 

                                   14 15 16 17 18 19 20 21 22 23 

                                   24 25 26 27 28 29 30 31 32 33... 
 

 
 

                                  Dimensions 

 

                      Covariance Parameters             6 

                      Columns in X                    143 

                      Columns in Z Per Subject          2 

                      Subjects                        120 

                      Max Obs Per Subject             218 

 

 

                            Number of Observations 

 

                  Number of Observations Read           11787 

                  Number of Observations Used           11778 

                  Number of Observations Not Used           9 

 

 

                               Iteration History 

 

          Iteration    Evaluations    -2 Res Log Like       Criterion 

 

                  0              1    113331.69046094 

                  1              2    112661.35777224      0.00000033 

                  2              1    112661.34411503      0.00000001 



Page 18 of 23 

Fikret Isik, FOR 728, Quantitative Forest Genetics Course Notes 

                  3              1    112661.34347914      0.00000000 

 

 

                           Convergence criteria met. 

 

 

 

                               Estimated G Matrix 

 

            Row    Effect    trait    family        Col1        Col2 

 

              1    trait     1          1        71.7416     97.0170 

              2    trait     2          1        97.0170      657.33 

 

 

                         Estimated G Correlation Matrix 

 

            Row    Effect    trait    family        Col1        Col2 

 

              1    trait     1          1         1.0000      0.4468 

              2    trait     2          1         0.4468      1.0000 

 

The elements of the G MATRIX are genetic (FAMILY) variances and covariance of two variables.  

By requesting GCORR option after the RANDOM statement, the code produces genetic correlation 

between two traits (0.4468). We can calculate genetic correlation using the G MATRIX components as 

rA = 97.01 / sqrt(71.74*657.33). 

 
 

                         Covariance Parameter Estimates 

 

                                               Standard         Z 

   Cov Parm    Subject             Estimate       Error     Value        Pr Z 

 

   UN(1,1)     family               71.7416     10.5217      6.82      <.0001 

   UN(2,1)     family               97.0170     39.8345      2.44      0.0149 

   UN(2,2)     family                657.33      232.09      2.83      0.0023 

   UN(1,1)     site*family*tree      864.72     11.4421     75.57      <.0001 

   UN(2,1)     site*family*tree     -138.18      144.20     -0.96      0.3379 

   UN(2,2)     site*family*tree      714.03      210.06      3.40      0.0003 

 

The above table is covariance parameters.   

71.7   =1/4 additive genetic variance for var1,  

97.0   =1/4 additive genetic covariance between var1 and var2,  

657.3 =1/4 additive genetic variance for var2 

The approximate standard errors of genetic variances and the covariance were given after the 

estimates, and the Z values and Probability test statistics. 
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                    Asymptotic Covariance Matrix of Estimates 

 

    Row  Cov Parm     CovP1     CovP2     CovP3     CovP4     CovP5     CovP6 

 

      1  UN(1,1)     110.71    132.47    158.97   -1.3724  -13.3739  -17.3885 

      2  UN(2,1)     132.47   1586.79   3219.00    1.7286  -20.0467  -37.3361 

      3  UN(2,2)     158.97   3219.00     53867   -117.18   35.7764   30.7322 

      4  UN(1,1)    -1.3724    1.7286   -117.18    130.92  -19.6660    1.6981 

      5  UN(2,1)   -13.3739  -20.0467   35.7764  -19.6660     20793  -6095.12 

      6  UN(2,2)   -17.3885  -37.3361   30.7322    1.6981  -6095.12     44124 

 

Variances of variance components and variance of genetic covariance is given in the table of 

Asymptotic Covariance Matrix above. The diagonal elements are the variances of variance for trait1, 

variance of the genetic covariance, and variance of variance for trait 2. The off diagonal elements are 

covariances between variances and the covariance. For example 132.47 is the covariance between the 

genetic variance for trait 1 and the genetic covariance. 

 

Using the Covariance Parameters and Asymptotic Covariance Matrix Tables we can easily calculate 

standard error of genetic correlation. The method used here is the DELTA, which is simply taking the 

variances of functions (see Lynch and Walsh 1998 for details). 

 

      

 
/* You do NOT need to change the following lines, except, If the name of 

the genotype in your data is not 'family' then change it accordingly */ 

 

/* Start IML */ 

 

    proc iml ; 

 

/* Go to output file '_varcomp', and create a 3-row vector for 'family' 

group only. The 1st estimate (row) is genetic variance of Trait1, the 2nd 

is the genetic Covariance, and the 3rd is genetic variance of Trait2 */ 

 

    use _varcomp; 

    read all var {Estimate} where(Subject="family") into _varcomp; 

    close _varcomp; 

 

/* Create Asymptotic Covariance Matrix for 'family' group, select the first 

3x3 block matrix of variances and covariances between estimates */ 

 

     use _cov; 

     read all var {CovP1 CovP2 CovP3} into _cov; 
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     close _cov; 

 

/* Genetic correlation */ 

 

     r = _varcomp[2,1]/sqrt(_varcomp[1,1]*_varcomp[3,1]); 

 

/* Standard error of genetic correlation */ 

 

     a =_cov[1,1]/(4*(_varcomp[1,1])**2) ; 

     ab=_cov[2,2]/((_varcomp[2,1])**2) ; 

     b =_cov[3,3]/(4*(_varcomp[3,1])**2) ; 

 

     c1=(2*_cov[1,3])/ (4*(_varcomp[1,1]*_varcomp[3,1])); 

     c2=(2*_cov[1,2])/ (2*(_varcomp[1,1]*_varcomp[2,1])); 

     c3=(2*_cov[2,3])/ (2*(_varcomp[2,1]*_varcomp[3,1])); 

 

** Variance of genetic correlation; 

     var_r=(r*r)*(a+b+ab+c1-c2-c3);  

 

** Standard error of genetic correlation         

     SE_r =sqrt(var_r) ;; 

 

     print r var_r SE_r ; 

 

     run; quit; 

 

          

    OUTPUT of the IML code 

 

                                 R     VAR_R      SE_R 

 

                          0.446755 0.0274051 0.1655449 

 

 

 

Calculation of Genetic Correlations Using ASReml 

 

The syntax for specifying a multivariate linear model in ASReml is 

 

Y-variates ~ fixed [!r random ] [!f sparse fixed ] 

 

Y-variates is a list of traits, 
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Fixed, random and sparse fixed are as in the univariate case (see Chapter 6) but involve the special 

term Trait and interactions with Trait. 

The design matrix for Trait has a level (column) for each trait. 

 Trait by itself fits the mean for each variate, 

 In an interaction Trait.Fac fits the factor Fac for each variate and Trait.Cov fits the covariate 

Cov for each variate. 

  

EXAMPLE: Half-sib family, 4 sites, single-tree plots 

(C:\RESEARCH\Handbook\Chapter 4 - Half-sibs) 

 

Command file: 
------------------------------------------------------------------------- 

Half-sib family, RCBD with single-tree plots, multi locations 

 site       4 !I 

 block     35 

 family   120 

 tree 

 height 

 fork 

 color 

 qual 

 value 

 fork4 

 height4 

C:\RESEARCH\Handbook\Data\HS.csv  !skip 1 

# Multivariate analysis to estimate genetic correlations 

value height4 ~ Trait Trait.site Trait.site.block !r Trait.family 

Trait.site.family 

 

1 2 2 

11787 0 ID 

Trait 0 US 

3*0 

 

Trait.family 2 

Trait 0 CORR 

0.708 

0.400 70.5 !GP 

family 0 ID 

 

Trait.site.family 2 

Trait 0 US 

3*0 

site.family 0 ID 

------------------------------------------------------------------------- 

 

Specifying multivariate variance structures in ASReml 

 

A more sophisticated error structure is required for multivariate analysis.  

In case of bivariate model, Trait is used instead of mu. Trait is the multivariate version of mu. It 

creates a vector holding the overall means for each trait included in the analysis. 
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In order to estimate covariances in the bivariate model, you need to supply starting variances and 

covariances.  

ERROR header line (1 2 2) 

1 = there is ONE independent error structure (# of environments) 

2 = the error structure is the product of TWO matrices (it is generally 2), the error structure for the 

residual must be specified as two-dimensional with independent records and an unstructured variance 

matrix across traits 

2 = is number of G header line (number of random effects). In our case, there are TWO covariance 

structures to define, FAMILY and SITE.FAMILY  

# ERROR structure line 

• the R structure definition line for units, that is, 11787 0 ID, could be replaced by 0 or 0 0 ID; 

this tells ASReml to fill in the number of units and is a useful option when the exact number of 

units in the data is not known to the user. It tells ASReml to count # of observations to design 

ID matrix 

• The error variance matrix is specified by the model Trait 0 US. The 0 between Trait and US is a 

place holder that we will use when dealing with spatial analysis. US is unstructured variance  

• 3*0 to create initial values. The initial values are for the lower triangle of the (symmetric) 

matrix specified row-wise. Finding reasonable initial values can be a problem. If initial values 

are written on the next line in the form q * 0 where q is t(t+1)=2 and t is the number of traits, 

ASReml will take half of the phenotypic variance matrix of the data as an initial value 

 

Family (G Matrix structure line) 

• The second structure is FAMILY 2. The first matrix has a 2 x 2 dimension as determined by 

Trait. The matrix is a correlation matrix (CORR). You can use a US matrix as well, but 

correlation matrices are easier to run. 

• 0.708   0.400   70.5 are starting variances and the CORRELATION for trait1 and trait2. The 

correlation (0.400) is just a guess 

• !GP attempts to keep the parameter in theoretical limit 
 

 

Partial output 

 
Source                Model  terms     Gamma     Component    Comp/SE   % C 

 Residual        UnStructured  1  1   16.0845       16.0845      74.42   0 U    

 Residual        UnStructured  2  1   68.6547       68.6547      53.02   0 U    

 Residual        UnStructured  2  2   865.299       865.299      74.80   0 U 

 Trait.family      UnStructured 1 1  0.716301      0.716301       5.69   0 U    

 Trait.family      UnStructured 2 1   4.26258       4.26258       4.45   0 U    

 Trait.family      UnStructured 2 2   70.4063       70.4063       6.55   0 U    

 Trait.site.family UnStructured 1 1  0.287621      0.287621       4.01   0 U    

 Trait.site.family UnStructured 2 1   1.31084       1.31084       3.13   0 U 

 Trait.site.family UnStructured 2 2   11.6331       11.6331       3.29   0 U    

 Covariance/Variance/Correlation Matrix UnStructured Residual 

   16.08      0.5819     

   68.65       865.3     

 Covariance/Variance/Correlation Matrix UnStructured Trait.family 

  0.7163      0.6002     

   4.263       70.41     

 Covariance/Variance/Correlation Matrix UnStructured Trait.site.family 

  0.2876      0.7166     

   1.311       11.63     
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More info: 

ASReml Cookbook. Luis Apiolaza, http://uncronopio.org/ASReml/HomePage 

ASReml Manual, Chapter 8, Multivariate analysis 
 

http://uncronopio.org/ASReml/HomePage

