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Introduction	

Generalized Linear Mixed Models (GLMM) have attracted considerable attention over the last 
years. The word “Generalized” refers to non-normal distributions for the response variable, and 
the word “Mixed” refers to random effects in addition to the usual fixed effects of regression 
analysis. With the development of modern statistical packages such as SAS, R, and ASReml, a 
large variety of statistical analyses are available to a larger audience. However, along with being 
able to handle more sophisticated models comes a responsibility on the part of the user to be 
informed on how these advanced tools work. 

The objective of this workshop is to provide an introduction to generalized linear mixed models 
by first discussing some of the assumptions and deficiencies of statistical linear models in 
general, then giving examples of uses in common situations in the natural sciences.  

The first section reviews linear models and regression analysis for simple and multiple 
variables. Two numerical examples are solved using the SAS REG software.   

The second section presents linear mixed models by adding the random effects to the linear 
model. A simple numerical example is presented using the SAS MIXED Procedure. 

The third (last) section introduces generalized linear models. Two illustrative examples of 
binary and count data are presented using the SAS GLIMMIX procedure and ASReml 
software.   

Linear	Models	

Linear models (regression) are often used for modeling the relationship between a single variable 
y, called the response or dependent variable, and one or more predictor, independent or 
explanatory variables, X1,…,Xp. When p=1, it is called simple regression but when p >1 it is 
called multiple regression.  
 
Regression analysis can be used to assess the relationship between explanatory variables on the 
response variable. It is also a useful tool to predict future observations or merely describe the 
structure of the data. 
 
To start with a simple example, suppose that y is the weight of trees, the predictors are the height 
(X1), and the age of the trees (X2). Typically the data will be available in the form of an array 
like the following 
 

𝑦" 𝑥"" 𝑥"$
𝑦$ 𝑥$" 𝑥$$
⋮ ⋮ ⋮
𝑦& 𝑥&" 𝑥&$

 

 
where yi is the observation of the i-th tree and n is the number of observations. 
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There is an infinite number of ways to model the relationship between the response and the 
explanatory variables. However, to keep it simple, the relationship can be modeled through a 
linear function in the parameters as follows 
 

𝑦 = 𝛽) + 𝛽"𝑋" + 𝛽$𝑋$ + 𝜀 
 
where 𝛽- for i = 0, 1, 2 are unknown parameters and ε is the error term. Thus, the problem is 
reduced to the estimation of three parameters. 
 
Notice that in a linear model the parameters enter linearly, but the predictors do not necessarily 
have to be linear. For instance, consider the following two functions 
 

𝑦 = 𝛽) + 𝛽"exp	(𝑋") + 𝛽$log(𝑋$) + 𝜀 
	

𝑦 = 𝛽) + 𝑋"
78 + 𝑋$exp	(𝛽$) + 𝜀 

 
The first one is linear in the parameters, but the second one is not. 
 
Using matrix representation, the regression equation for the above example can be written as: 
 

𝐲 = 𝐗𝛃 + 	𝛆 
 
where 𝐲 = (𝑦", … , 𝑦&)?, 𝛃 = (𝛽), 𝛽", 𝛽$)?, 𝛆 = (𝜀), … , 𝜀&)?, and the design matrix X is 
 

𝐗 = @

1 𝑥"" 𝑥"$
1 𝑥$" 𝑥$$
⋮ ⋮ ⋮
1 𝑥&" 𝑥&$

B 

 
The estimation of β can be carried out using the least square approach. That is, we define 𝛃C as 
the best estimate of β in the sense that minimizes the sum of the squared errors. 

D𝜀-$
&

-E"

= 𝛆F𝛆 = (𝐲 − 𝐗𝛃)?(𝐲 − 𝐗𝛃) 

 
Differentiating with respect to β and setting equal to zero, it can be shown that 𝛃C satisfies the 
normal equations 
 

𝐗F𝐗𝛃C = 𝐗𝐓𝐲 
 
Thus, provided that 𝐗F𝐗 is invertible 
 

𝛃C = (𝐗F𝐗)I"𝐗𝐓𝐲 
 



 

4 
 

So far, we have not assumed any distributional form for the errors ε. The usual assumption is that 
the errors are normally distributed and in practice this is often, although not always, a reasonable 
assumption.  
 
If we assume that the errors are independent and identically normally distributed with mean 0 
and variance 𝜎$, that is to say 𝛆	~	𝑁(0, 𝜎$𝐈), then the expectations of observations are  
 

𝐲	~	𝑁(𝐗𝛃, 𝜎$𝐈) 
and expectations of parameters are 
 

𝛃C	~	𝑁(	𝛃, (𝐗F𝐗)I"𝜎$	) 
 
 

Linear	regression	example		

We would like explore linear dependency between height and weight. The linear model can be 
run using SAS GLM or REG procedures.  

 
title 'Simple Linear Regression'; 
data A; 
   input Height Weight Age @@; 
 datalines; 
  69.0 112.5 14  56.5  84.0 13 65.3  98.0 13 
  62.8 102.5 14  63.5 102.5 14 57.3  83.0 12 
  59.8  84.5 12  62.5 112.5 15 62.5  84.0 13 
  59.0  99.5 12  51.3  50.5 11 64.3  90.0 14 
  56.3  77.0 12  66.5 112.0 15 72.0 150.0 16 
  64.8 128.0 12  67.0 133.0 15 57.5  85.0 11 
  66.5 112.0 15 
   ; 
 
/* Create a unique age for each */ 
 
data B (drop =i ); set A; 
   do i = 1 to 1 ; 
      b = ranuni (i) ; 
      output ; 
   end; 
run;  
 
data B; set B ; 
   Age=round(sum(year,b),.001) ;  
run; 
 
/* Simple linear regression */ 
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ods graphics on; 
ods listing style=statistical sge=on; 
proc reg data=A ; 
    model weight = height / clm cli; 
run; quit ; 
 

 
 
Figure1. Scatter plot and regression line of Height on Weight 
 
 
The SAS output: 
 
 
                            The REG Procedure 
                       Dependent Variable: Weight 
 
                           Analysis of Variance 
 
                                  Sum of           Mean 
 Source          DF        Squares         Square    F Value    Pr > F 
 
 Model            1     7193.24912     7193.24912      57.08    <.0001 
 Error           17     2142.48772      126.02869 
 Corrected Total 18     9335.73684 
 
 
              Root MSE         11.22625    R-Square     0.7705 
              Dependent Mean  100.02632    Adj R-Sq     0.7570 
              Coeff Var        11.22330 
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                         Parameter Estimates 
 
                      Parameter   Standard 
 Variable     DF       Estimate      Error    t Value    Pr > |t| 
 
 Intercept     1     -143.02692   32.27459      -4.43      0.0004 
 Height        1        3.89903    0.51609       7.55      <.0001 

 

The intercept is 𝛽O) = −143.027 and the slope is 	𝛽C" = 3.899  
 
 
Multiple linear regression 
 
Now consider that we also want to include tree age as another predictor. That is, we want to 
assess the relationship between Age and Weight while keeping the effect of Height constant. In 
simple regressions, a line is fit to the data, whereas in multiple regressions, a p-th dimensional 
plane is fit, where p is the number of explanatory variables. To visualize the data and the fitted 
values, a 3D plot is necessary.  
 
/* Create 3d plot */ 
 
proc g3grid data=ws.a out=a; 
   grid age*height=weight  /  spline   ; 
run; 
 
goptions device=png xpixels=720 ypixels=600 noborder 
gunit=pct htitle=3 htext=2 reset=all ; 
 
ODS LISTING CLOSE; 
proc g3d data=A; 
   plot age*height=weight /grid  ctop=red 
 cbottom=blue caxis=black  ; 
run; quit; 

 
Figure2. Regression plane of weight, 
age, and height 	
	
	
	
	
In this case, we can use the multiple 
linear regression approach. So, we will 
need to estimate three parameters from 
the data. In SAS, this can be easily done 
by adding the following lines to the code 
shown above. 
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/* Multiple linear regression */ 
 

ods html image_dpi=300;  * Image resolution ; 
ods graphics on; 
ods listing style=statistical sge=on; * Graphic type; 
 
proc reg data=ws.A ; 
    model weight = height age; 
run; quit; 

 
 
The SAS output is   
 
 
                               The REG Procedure 
                          Dependent Variable: Weight 
 
 
                              Analysis of Variance 
 
                                     Sum of           Mean 
 Source        DF        Squares         Square    F Value    Pr > F 
 
 Model          2     7574.69595     3787.34798      34.41    <.0001 
 Error         16     1761.04089      110.06506 
 Corrected Total  18     9335.73684 
 
 
              Root MSE         10.49119    R-Square     0.8114 
              Dependent Mean  100.02632    Adj R-Sq     0.7878 
              Coeff Var        10.48843 
 
 
                         Parameter Estimates 
 
                      Parameter   Standard 
 Variable     DF       Estimate      Error    t Value    Pr > |t| 
 
 Intercept     1     -155.29024   30.87234      -5.03      0.0001 
 Height        1        3.49864    0.52808       6.63      <.0001 
 Age           1        2.68549    1.44255       1.86      0.0811 
 
Following with the notation, the estimated parameters of the multiple linear regression are 𝛽O) =
−155.29, 𝛽O" = 3.498 and 𝛽O$ = 2.685. Thus, the relationship among variables can be expressed 
as: 𝑊𝑒𝑖𝑔ℎ𝑡 = −155.29 + 	3.498	𝐻𝑒𝑖𝑔ℎ𝑡	 + 	2.685	𝐴ge 
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Linear	Mixed	Model	
 
A linear mixed model is a statistical model containing both fixed effects and random effects. 
These models are widely used in the biological and social sciences. In matrix notation, linear 
mixed models can be represented as 
 

𝐲 = 	𝐗𝛃 + 𝐙𝛄 + 𝛆 
where: 
y is the n x 1 vector of observations, 
β is a p x 1 vector of fixed effects, 
γ is a q x 1 vector of random effects, 
ε is a n x 1 vector of random error terms, 
X is the n x p design matrix for the fixed effects relating observations y to β, 
Z is the n x q design matrix for the random effects relating observations y to γ.  
 
We assume that γ and ε are uncorrelated random variables with zero means and covariance 
matrices G and R, respectively.  

 
𝐸[𝜸] = 𝟎,   𝑉𝑎𝑟[𝛄] = 𝐆 

 
𝐸[𝛆] = 𝟎,  𝑉𝑎𝑟[𝛆] = 𝐑 

 
𝑐𝑜𝑣(𝛆, 𝛄) = 𝟎 

 
Thus, the expectation and variance (V) of the observation vector y are given by:  
 

𝐸[𝐲] = 𝐗𝛃 
 

𝑉𝑎𝑟[𝐲] = 𝐕 = 𝐙𝐆𝐙𝐓 + 𝐑 
 
Understanding the V matrix is a very important component of working with mixed models since 
it contains both sources of random variation and defines how these models differ from 
computations with Ordinary Least Squares (OLS).  
 
If you only have random effects models (such as a randomized block design) the G matrix is the 
primary focus. On the other hand, for repeated measures or for or spatial analysis, the R matrix is 
relevant. 
 
If we also assume the random terms are normally distributed as: 
 

𝛄	~	𝑁(𝟎,𝐆),     𝛆	~	𝑁(𝟎, 𝐑) 
 
Then, the observation vector will be normally distributed	𝐲	~	𝑁(𝐗𝛃,𝐕). 
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For the general linear mixed model described above, the Henderson’s mixed model equations 
(MME) can be used to find 𝛃C and 𝛄q, the best linear unbiased estimator (BLUE) of β, and the best 
linear unbiased predictor (BLUP) of γ, respectively. 
 

r𝐗
𝐓𝐑I𝟏𝐗 𝐗𝐓𝐑I𝟏𝐙
𝐙𝐓𝐑I𝟏𝐗 𝐙𝐓𝐑I𝟏𝐙 + 𝐆I𝟏

t r𝛃
C
𝛄q
t = u𝐗

𝐓𝐑I𝟏𝐲
𝐙𝐓𝐑I𝟏𝐲

v 

 
The solutions can also be written as: 
 

𝛃C = 	 (𝐗𝐓𝐕I𝟏𝐗)I"𝐗𝐓𝐕I𝟏𝐲 
 

𝛄q = 𝐆𝐙𝐓𝐕I𝟏w𝐲 − 𝐗𝛃Cx 
 
If the G and R matrices are known, generalized least squares can estimate any linear 
combination of the fixed effects β. However, as usually is the case these matrices are not known, 
so a complex iterative algorithm for fitting linear models must be used to estimate them. 
 
Consider the following example. Suppose that we have collected data on the growth of different 
trees measured in two different locations. We can assume that the trees come from a large 
population, which is a reasonable assumption, and therefore, we will treat them as random.  
 

Tree (t) Location (l) Height (y) 
1 1 87 
2 2 84 
3 2 75 
4 1 90 
5 2 79 

 
The linear mixed model can be expressed in matrix notation as follows 
 

⎣
⎢
⎢
⎢
⎡
87
84
75
90
79⎦
⎥
⎥
⎥
⎤
= 	

⎣
⎢
⎢
⎢
⎡
1 0
0 1
0 1
1 0
0 1⎦

⎥
⎥
⎥
⎤
	�𝑙"𝑙$

� 	+ 	

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑡"
𝑡$
𝑡�
𝑡�
𝑡�⎦
⎥
⎥
⎥
⎤
	+ 	

⎣
⎢
⎢
⎢
⎡
𝜀"
𝜀$
𝜀�
𝜀�
𝜀�⎦
⎥
⎥
⎥
⎤
 

 
which has the matrix form 𝐘 = 	𝐗𝛃 + 𝐙𝛄 + 𝛆. Notice that we are treating location as fixed 
effects. Matrices X and Z relate phenotypic observations to location and random tree effects. 
 
We need to make some assumptions for the variance components of the model. In this case, we 
will assume that trees are independent of each other, and the errors are independent. So, the 
structure of the variance matrices can be expressed as: 
 

𝐑 = 𝐈�𝜎�$    𝐆 = 𝐈�𝜎�$     𝐕 = 𝐙𝐆𝐙𝐓 + 𝐑 
 
where 𝐈�represents the n x n identity matrix. Also, we assume that: 
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𝛄	~	𝑁(𝟎,𝐆)   𝛆	~	𝑁(𝟎,𝐑)  	𝐘	~	𝑁(𝐗𝛃,𝐕) 

 
We can compute the solutions using R software or any other software that uses matrix algebra.  
 

𝛃C = �𝑙"𝑙$
� = �88.5079.33� 

 

𝛄q =

⎣
⎢
⎢
⎢
⎡
𝑡"
𝑡$
𝑡�
𝑡�
𝑡�⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡
−1.0067
3.1320
−2.9083
1.0067
−0.2237⎦

⎥
⎥
⎥
⎤
 

 
Below is a sample R code to compute the above solution. 
 
# Linear Mixed Model Example y = X*B + Z*U + e 
# Y, observations 
Y=c(87, 84, 75, 90, 79) 
 
# X, design matrix for the fixed effects 
X=matrix(c(1,0,0,1,0,0,1,1,0,1),5,2) 
 
# Z, design matrix for the random effects 
Z=diag(5); #identity matrix of size 5x5 
 
# G = var(U) 
Su2=100; # random effect variance 
G=diag(5)*Su2; 
 
# R = var(e) 
Se2=49; # error variance 
R=diag(5)*Se2; 
 
# V=var(Y) 
V=Z%*%G%*%t(Z) + R 
 
# Solutions 
Vi= solve(V) 
B = solve( t(X)%*%Vi%*%X )%*%t(X)%*%Vi%*%Y; 
U = G%*%t(Z)%*%Vi%*%(Y - X%*%B); 
 
# Print out solutions 
print (U, quote=T, row.names=F) 
 
# Or produce histogram of BLUP values 
hist(U, col="lightblue") 
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Generalized	Linear	Models	
 
Recall that linear models, as its name states, assumes that  
 

- the relationship between the dependent variable and the fixed effects can be modeled 
through a linear function,  

- The variance is not a function of the mean, and  
- the random terms follow a normal distribution  

 
In some situations, any or even all these assumptions may be violated. 
 
They are an extension of ordinary least squares regression.  
The GLM generalizes linear regression by  

- Allowing the linear model to be related to the response variable via a link function and 
- Allowing the magnitude of the variance of each measurement to be a function of its 

predicted value.  

In a GLM, each outcome of the dependent variables, y, is assumed to be generated from a 
particular distribution in the exponential family. The most common distributions from this family 
are Binomial, Poisson, and Normal.  

The mean, µ, of the distribution depends on the independent variables, X, through the inverse 
link function (g-1).  

𝐸(𝐘) = 𝝁 = 𝑔I"(𝐗𝛃) = 𝑔I"(𝛈)  

where E(y) is the expected value of y;  𝛈 = 𝐗𝛃  is called the linear predictor, a linear 
combination of unknown parameters, β, and g is the link function. 

In this framework, the variance V is typically a function of the mean: 

𝑉𝑎𝑟(𝐘) = 𝑉(𝛍) = 𝑉w𝑔I"(𝐗𝛃)x = 𝑉w𝑔I"(𝛈)x 
 

 (Inverse) Link Function converts a linear predictor into a mean 
 

E(yi) = µi 
 

Distribution  Link    Inverse Link   
Normal  Identity   h    
Binomial/n  Logit = ln(µi(1- µ i) eh = 1/(1 + eh)     
Poisson  Log   eh      

 
Selection of inverse link functions is typically based on the error distribution. The logit link 
function, unlike the identity link function, will always yield estimated means in the range of zero 
to one. For most univariate link functions, link and inverse link functions are increasing 
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monotonic functions. In other words, an increase in the linear predictor results in an increase in 
the conditional mean, but not at a constant rate.  
 
Variance Function 
The variance function is used to model non-systematic variability. Typically with a generalized 
linear model, residual variability arises from two sources. First, variability arises from the 
sampling distribution. For example, a Poisson random variable with mean µ has a variance of µ. 
Second, additional variability, or over-dispersion, is often observed.  

 
Variance function models the relationship between the variance of y and µ.  
 

Distribution   Variance -  v(µ) 
Normal   1 
Binomial  µ (1 -µ) 
Poisson   µ 

 

Consider the situation where individual seeds are laid on damp soil in different pots. In this 
experiment, the pots are kept at different temperatures T for a number of days D. After an 
arbitrary number of days, the seeds are inspected and the outcome y=1 is recorded if it has 
germinated and y=0 otherwise. The probability of germination p can be modeled through a linear 
function of the form: 

𝜂 = 𝛽) + 𝛽"𝐷 + 𝛽$𝑇 

Where η is the linear predictor and 𝛽), 	𝛽" and	𝛽$ are parameters to be estimated. Note that there 
is nothing holding the linear predictor to be between 0 and 1.  

In GLM, however, the probability is restricted to the interval (0,1) through the inverse link 
function: 

𝑝 =
1

1 + 𝑒I� = 𝑔I"(𝜂) 

 
It is worth noting that p is the expected value of y for a binomial distribution. Also notice the 
non-linear relationship between the outcome p and the linear predictor η is modeled by the 
inverse link function. In this particular case, the link function is the logistic link function or logit: 

𝜂 = logr
𝑝

1 − 𝑝t = 𝑔(𝑝) 

 

Binary	Data	Example	–	Disease	incidence	probability			

Here is a SAS code to reproduce data. 
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goptions reset=all cback=white htitle=15pt htext=15pt;  
data pgerm; 
   do T=0 to 40 by 0.5; 
      do D=0 to 15 by 0.5; 
         p=1/(1+exp(8 - 0.19*T - 0.37*D)); 
         output; 
      end; 
   end; 
run; 
 
SAS code to produce 3D plot of Figure 4 
 
/* Designate a GIF file for the G3D output. */ 
filename anim 'c:\users\fisik\pond.gif'; 
 
/** animation. **/ 
goption reset dev=gifanim gsfmode=replace noborder htext=1.4 
gsfname=anim xpixels=640 ypixels=480 
iteration=0 delay=5 
gepilog='3B'x /* add a termination char to the end of the GIF file */ 
disposal=background; 
 
proc g3d data=pgerm; 
   plot D*T=p / tilt=60 grid rotate=0 to 350 by 10 
                xticknum=4 yticknum=5 zticknum=5  
                zmin=0 zmax=1  
                caxis = black ctop=red cbottom=blue; 
      label T='Temperature' D='Days' p='p' ; 
  run; quit; 

   
Figure 4: Disease incidence probability as a function of Temperature and Day. The values of 𝛽- 
for i = 0, 1, 2 have been chosen for illustrative purposes  
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The inverse link function is, p = [1 + exp	(−η)]I". Then, the linear predictor takes the form: 
𝜂 = −8 + 0.19𝑇 + 0.37𝐷. Using the model we can estimate how many days are needed for the 
probability of disease incidence to exceed 80% at a given temperature. After some simple 
algebra it can be shown that at temperature 10 at least 20 days are needed to reach a probability 
of 0.80 germination.   
The above example has no random effects so it is a generalized linear model (GLM), not a 
generalized mixed model (GLMM).  
 

Count	Data	Example	–	Number	of	trees	infected		

We have previously considered an example where the outcome variable is numeric and binary. 
Often the outcome variable is numeric but in the form of counts. Sometimes it is a count of rare 
events such as the number of new cases of fusiform rust of loblolly pine occurring in a 
population over a certain period of time.   

The probability distribution of a Poisson random variable X representing the number of 
successes occurring in a given time interval or a specified region of space is given by the 
formula: 
The Poisson probability function is appropriate for count data with no upper bound to the range, 
that is, y could be any non-negative integer. 

Pr(𝑦 = 𝑘) = �����

�!
,   𝑘 = 0, 1, 2,… 

Where, λ is the mean number of success in a given time or space interval. This λ is often referred 
to as the Poisson “intensity” as it is the average event count. k is the random variable 
representing the number of success occurring in given a time interval or specified region of space 
(k = 0, 1, 2, 3...). e is 2.71828.  

As a hypothetical example, we can use data that relate the number of newly infected trees over a 
three-month period with its age, A, and height, H, within a population. 

Our interest lies in modeling λ as a function of age (A) and height (H) for a given family and 
location. Using a linear model for λ could result in negative intensities, λ <0, which would make 
no sense. The natural link function 𝒈(𝝀) for a Poisson is the logarithm, so the model can be the 
following: 

𝜂 = 𝛽) + 𝛽"𝐴 + 𝛽$𝐻 

Where η is the linear predictor and 𝛽), 	𝛽", and 	𝛽$ are parameters to be estimated.  

The link function and its inverse are given by: 

𝜂 = ln(𝜆) = 𝑔(𝜆) 

𝜆 = 𝑒� = 𝑔I"(𝜂) 
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In Figure 5 the intensity λ as a function of age and height is plotted. Again, the values of 𝛽- for i 
= 0, 1, 2 have been chosen for illustrative purposes only. Then, the linear predictor takes the 
form: 𝜂 = −2 − 0.03𝐴 − 0.01𝐻.  

 
Here is a SAS code to reproduce Figure 5. 
goptions reset=all cback=white htitle=15pt htext=15pt;  
data intensity; 
   do A=0 to 50 by 0.5; 
      do H=0 to 30 by 0.5; 
         I=exp(-2 - 0.03*A - 0.01*H); 
         output; 
      end; 
   end; 
run; 
 
proc g3d data=intensity; 
title 'Intensity'; 
   plot A*H=I / rotate=160 tilt=80  grid 
                xticknum=4 yticknum=3 zticknum=5  
                zmin=0 zmax=0.15   
                caxis = black ctop=blue cbottom=red; 
           label A='Age (years)' H='Height (meters)' I='lambda'; 
  run; quit; 
 

   

Figure 5: Intensity as a function of Age and Height. The inverse link function is defined as 𝜆 =
𝑒𝑥𝑝	(𝜂), where 𝜂 = −2 − 0.03𝐴 − 0.01𝐻. 

 
Notice that the above count data example does not include random effects, therefore, it is a 
generalized linear model, not a generalized linear mixed model. In the next section the 
generalized linear mixed model is presented.  
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Generalized	Linear	Mixed	Model	

A Generalized linear mixed models (GLMM) is an extension to the generalized linear model 
(GLM) in which the linear predictor contains random effects in addition to the fixed effects.  

The expectations of the GLMM are: 

𝐸[𝐲|𝐮] = 𝑔I"(𝐗𝛃 + 𝐙𝐮) = 𝑔I"(𝛈) 

Where  

y represents the (n x 1) response vector,  

X the (n x p) design matrix of rank k for the (p x 1) fixed effects β and  

Z the (n x q) design matrix for the (q x 1) random effects u.  

The random effects u are assumed to be normally distributed with mean 0 and variance matrix 
G, that is to say 𝑢	~	𝑁(𝟎,𝐆). 

𝐸[𝒖] = 𝟎,   𝑉𝑎𝑟[𝐮] = 𝐆 
 

The fixed and random effects are combined to form a linear predictor 

𝛈 = 𝐗𝛃 + 𝐙𝐮	 

The model for the vector of observations y is obtained by adding a vector of residuals, ε, as 
follows: 

𝐲 = 𝛈 + 𝛆 = 	𝐗𝛃 + 𝐙𝐮 + 𝛆 

The relationship between the linear predictor and the vector of observations is modeled as 

𝐲|𝐮	~	(𝑔I"(𝛈), 𝐑) 

The above notation denotes that the conditional distribution of y given u has mean 𝑔I"(𝛈) and 
variance R. The conditional distribution of 𝐲|𝐮 is usually referred as the error distribution. Note 
that Instead of specifying a distribution for y, as in the case of a GLM, we now specify a 
distribution for the conditional response, 𝐲|𝐮. This formulation is also known as the conditional 
model specification. 
	
Last, the variance matrix of the observations is given by: 
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V(𝐲) = E[V(𝐲|𝐮)] + 	V[E(𝐲|𝐮)] = 𝐀𝟏/𝟐𝐑𝐀𝟏/𝟐 + 𝐙𝐆𝐙𝐓 

Where matrix A is a diagonal matrix that contains the variance functions of the model. 

The class of generalized linear mixed models contains several important types of statistical 
models. For example, 
 
• Linear models: no random effects, identity link function, and normal distribution 
• Generalized linear models: no random effects present 
• Linear mixed models: random effects, identity link function, and normal distribution  

The generalized linear mixed models have been developed to address the deficiencies of linear 
mixed models.  

There are many cases when the implied assumptions are not appropriate.  

For instance, the linear mixed model assumes that the relationship between the mean of the 
dependent variable y and the fixed and random effects can be modeled through a linear function. 
This assumption is questionable, for example, in modeling disease incidence.  

Another assumption of the linear mixed model is that the variance is not a function of the mean, 
and the random effects follow a normal distribution. The assumption of constant variance is 
violated when analyzing a zero/one trait, such as diseased (1) or not diseased (0). In this case, the 
response variable is Binomial. So, for a predicted disease incidence, the variance is 𝜇(1 − 𝜇), 
which is a function of the mean. 

The assumption of normality is not valid for a binary trait. The outcome is a random variable that 
can only take two values, zero or one. In contrast, the normal distribution is a bell shaped curve 
that can take any real number. 

Finally, the predictions from linear mixed models can take any value. Whereas predictions for a 
binary variable is bounded (0,1) or for a count variable, it cannot take negative values.  
 

Probability, Odds and Odds Ratio 

In order to understand the output and correctly interpret results, we need to be familiar with the 
probability, odds and odds ratio. Here is an example data and the P, ODDS and OR.   

 
Outcome 

 No               Yes 
 

Sum 

Sample1 30 70 100 

Sample2 20 180 200 

Sum 50 250 300 
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Sample1 
Probability of a Yes outcome = 70/100 (0.70) 
Probability of a No outcome  = 30/100 (0.30) 
The odds of Outcome in Sample1 Odds = p / (1-p) = 0.70 /0.30 = 2.3  
We expect 2.3 times as many occurrences as non-occurrences in Sample1.   
 
Sample2 
Probability of a Yes outcome = 180/200 (0.90) 
Probability of a No outcome  = 20/200 (0.10) 
The odds of Outcome in Sample2 Odds = p / (1-p) = 0.90 /0.10 = 9  
We expect 9 times as many occurrences as non-occurrences in Sample2.   
 
The odds ratio of Sample2 to Sample1 is OR = 9/2.3 = 3.86  
The odds of having outcome (Yes) in Sample2 is almost 4 times those in Sample1.  
 

Over-dispersion	in	Binomial	and	Poisson	Regression	Models	
 
(Modified from http://rfd.uoregon.edu/files/rfd/StatisticalResources/gnmd08_overdisp.txt) 
 

Over-dispersion results when the data appear more dispersed than is expected under some 
reference model. It may occur with count data analyzed with binomial or Poisson regression 
models, since the variance of both distributions is a function of the mean. That is, 

 Var[Y] = f(E[Y]) * j 

With both distributions the scale parameter phi is assigned a value of 1. 

To understand what over-dispersion implies, first review the linear regression model (computed 
with ordinary least squares). Under the normal distribution data are never over-dispersed because 
the mean and variance are not related. The expectations of a linear model (y = X'β + e) are 
 

e ~ NID (0, s2e) 
 
The variance of the residuals (sigma^2) is assumed constant for all linear combinations of the 
covariates. This variance is estimated from the data and can assume any value greater than zero no 
matter what the mean value is. Thus, the response values are assumed to have constant variance: 
 
 Var(y)= s2e*1  
 
The normal errors and identity link function (linear regression) have the variance function Var(µ) 
=1. This variance is constant for all yi. 
 
For a generalized linear model: 
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 g(µ) = X'β  
 
where µ=E(y) and g is the link function. The variance of y is: 
 
 Var(y)= j * V(µ) 
 
That is, the variance of an observation equals some constant j (the scale parameter) times a 
function of the mean of y. 
 

• For a binary variable y, the variance is multiplicative function of its mean: Var(y) = µ (1-µ)  
• Under the Poisson distribution the variance of is the mean itself: Var(y) = E(y)= µ.   

 

In either case, the observed counts have variances that are functions which depend on the value 
of the mean. That is, the variance of y depends on the expectation of y, which is estimated from 
the data. 

When either model is fit under the assumption that the data were generated from a binomial 
distribution or by a Poisson process, the scale parameter, phi, is automatically set equal 1. That is 
why we see 1.00 for error variance in the ASReml output or in SAS GENMOD procedure output 
when we fit Poisson or Binomial distributions. The value 1 is not error variance, but it is a scale 
parameter and should not be used as variance component to calculate heritability for binomial 
distribution.  

For binomial and Poisson regression models, the covariance matrix (and hence the standard errors 
of the parameter estimates) is estimated under the assumption that the chosen model is appropriate. 
More variation in the data may be present than is expected by the distributional assumption. This is 
called over-dispersion (also known as heterogeneity) which typically occurs when the 
observations are correlated or are collected from "clusters". 
 
To identify possible over-dispersion in the data for a given model, divide the deviance by its 
degrees of freedom: this is called the dispersion parameter. If the deviance is reasonably "close" 
to the degrees of freedom (i.e., the scale parameter=1) then evidence of over-dispersion is lacking. 
 
 Dispersion parameter (or scaled deviance)=Deviance/DF 
 
A scale parameter that is greater than 1 does not necessarily imply over-dispersion is present. This 
can also indicate other problems, such as an incorrectly specified model (omitted variables, 
interactions, or non-linear terms), an incorrectly specified functional form (an additive rather than 
a multiplicative model may be appropriate), as well as influential or outlying observations. 
 
If you believe you have correctly specified the model and the scale estimate is greater than 1, then 
conclude your data are over-dispersed. You should be able to identify possible reasons why your 
data are over-dispersed. If you do not correct for over-dispersion, the estimates of the standard 
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errors are too small which leads to biased inferences (i.e. you will observe smaller p-values than 
you should and thus make more Type I errors). As a result, confidence intervals will also be 
incorrect. 

 
When you have the "correct" model, outliers are not a problem, and the scaled deviance is large, 
there are various choices for SAS procedures (GENMOD, GLIMMIX, NLMIXED) or for 
ASReml to correct for over-dispersion.  

 

Example1:	Binomial	Counts	in	Randomized	Blocks	

(Modified from SAS GLIMMIX Help system)  
 
In the context of spatial prediction in generalized linear models, Gotway and Stroup (1997) 
analyze data from an agronomic field trial. Researchers studied sixteen varieties (entries) of 
wheat for their resistance to infestation with the Hessian fly. They arranged the varieties in a 
randomized complete block design on an 8 × 8 grid. Each 4 × 4 quadrant of that arrangement 
constitutes a block. The outcome of interest was the number of damaged plants (𝑌-) out of the 
total number of plants growing on the unit (𝑛-). In other words, determine if there are significant 
differences between entries (Plant varieties). The two subscripts identify the block (i =1,...,4) and 
the entry (j = 1,...,16).  
 
The following SAS statements create the data set. The variables lat and lng denote the coordinate 
of an experimental unit on the 8 × 8 grid. 
 
data HessianFly; 
label Y = ’No. of damaged plants’ 
      n = ’No. of plants’; 
input block entry lat lng n Y @@; 
datalines; 
1 14 1 1 8 2    1 16 1 2 9 1 
1 7 1 3 13 9    1 6 1 4 9 9 
1 13 2 1 9 2    1 15 2 2 14 7 
1 8 2 3 8 6     1 5 2 4 11 8 
1 11 3 1 12 7   1 12 3 2 11 8 
1 2 3 3 10 8    1 3 3 4 12 5 
1 10 4 1 9 7    1 9 4 2 15 8 
1 4 4 3 19 6    1 1 4 4 8 7 
2 15 5 1 15 6   2 3 5 2 11 9 
2 10 5 3 12 5   2 2 5 4 9 9 
2 11 6 1 20 10  2 7 6 2 10 8 
2 14 6 3 12 4   2 6 6 4 10 7 
2 5 7 1 8 8     2 13 7 2 6 0 
2 12 7 3 9 2    2 16 7 4 9 0 
2 9 8 1 14 9    2 1 8 2 13 12 
2 8 8 3 12 3    2 4 8 4 14 7 
3 7 1 5 7 7     3 13 1 6 7 0 
3 8 1 7 13 3    3 14 1 8 9 0 
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3 4 2 5 15 11   3 10 2 6 9 7 
3 3 2 7 15 11   3 9 2 8 13 5 
3 6 3 5 16 9    3 1 3 6 8 8 
3 15 3 7 7 0    3 12 3 8 12 8 
3 11 4 5 8 1    3 16 4 6 15 1 
3 5 4 7 12 7    3 2 4 8 16 12 
4 9 5 5 15 8    4 4 5 6 10 6 
4 12 5 7 13 5   4 1 5 8 15 9 
4 15 6 5 17 6   4 6 6 6 8 2 
4 14 6 7 12 5   4 7 6 8 15 8 
4 13 7 5 13 2   4 8 7 6 13 9 
4 3 7 7 9 9     4 10 7 8 6 6 
4 2 8 5 12 8    4 11 8 6 9 7 
4 5 8 7 11 10   4 16 8 8 15 7 
; 

 
If infestations are independent among experimental units, and all plants within a unit have the 
same propensity of infestation, then the 𝑌- are binomial random variables.  
 

 
Figure 1. Data visualization and summary is an important step before any statistical analysis. 
The chart shows large differences between varieties for infestation. The horizontal dashed line 
shows the overall mean (0.54) incidence.    
  

Analysis	as	a	GLM	

Let’s consider first a standard generalized linear model for independent binomial counts. The 
SAS statements would be as follows: 
 

proc glimmix data=HessianFly; 
class block entry; 
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model y/n = block entry / solution; 
run; 

 
It may worth noting that the GLIMMIX procedure supports two kinds of syntax for the response 
variable. This example uses the events/trials syntax. The variable y represents the number of 
successes (events) out of n Bernoulli trials. 
 
When the events/trials syntax is used, the GLIMMIX procedure automatically selects the 
binomial distribution as the response distribution. Once the distribution is determined, the 
procedure selects the link function for the model. The default link for binomial data is the logit 
link. The above statement is equivalent of the following statements.  
 

proc glimmix data=HessianFly ; 
class block entry; 
model y/n = block entry/solution dist=binomial link=logit ; 
run; 

 
Part of the output is given below: 
 
The “Model Information” table describes the model and methods used in fitting the statistical 
model. 
	
                       Model Information 
 
        Data Set                      WORK.HESSIANFLY 
        Response Variable (Events)    Y 
        Response Variable (Trials)    n 
        Response Distribution         Binomial 
        Link Function                 Logit 
        Variance Function             Default 
        Variance Matrix               Diagonal 
        Estimation Technique          Maximum Likelihood 
        Degrees of Freedom Method     Residual 
 
The GLIMMIX procedure recognizes that this is a model for uncorrelated data (variance matrix 
is diagonal) and that parameters can be estimated by maximum likelihood. 
 
 
The “Class Level Information” table lists the levels of the variables specified in the CLASS 
statement and the ordering of the levels. 
 
                    Class Level Information 
 
   Class    Levels    Values 
 
   block         4    1 2 3 4 
   entry        16    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
 
       Number of Observations Read          64 
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       Number of Observations Used          64 
       Number of Events                    396 
       Number of Trials                    736 
 
 
The “Dimensions” table lists the size of relevant matrices. 
 
                      Dimensions 
 
           Columns in X                  21 
           Columns in Z                   0 
           Subjects (Blocks in V)         1 
           Max Obs per Subject           64 
 
Because of the absence of random effects in this model, there are no columns in the Z matrix. 
The 21 columns in the X matrix comprise the intercept, 4 columns for the block effect and 16 
columns for the entry effect.  
 
The “Fit Statistics” table lists information about the fitted model. 
 
                         Fit Statistics 
 
              -2 Log Likelihood             265.69 
              AIC  (smaller is better)      303.69 
              AICC (smaller is better)      320.97 
              BIC  (smaller is better)      344.71 
              CAIC (smaller is better)      363.71 
              HQIC (smaller is better)      319.85 
              Pearson Chi-Square            106.74 
              Pearson Chi-Square / DF         2.37 
 
The -2 Log Likelihood values are useful for comparing nested models, and the information 
criteria AIC, AICC, BIC, CAIC, and HQIC are useful for comparing non-nested models. On 
average, the ratio between the Pearson Chi-square statistic and its degrees of freedom should 
equal one in GLMs. Values larger than one are indicative of over-dispersion. With a ratio of 
2.37, these data appear to exhibit more dispersion than expected under a binomial model with 
block and varietal effects. 
 
 
The “Type III Tests of Fixed Effect” table displays significance tests for the two fixed effects in 
the model. 
 
                Type III Tests of Fixed Effects 
 
                      Num      Den 
        Effect         DF       DF    F Value    Pr > F 
 
        block           3       45       1.42    0.2503 
        entry          15       45       6.96    <.0001 
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These tests are Wald-type tests, not likelihood ratio tests. The entry effect is clearly significant in 
this model with a p-value of < 0.0001, indicating that the 16 wheat varieties are not equally 
susceptible to damage by the Hessian fly. 
 
 

Analysis	as	GLMM	–	Random	block	effects			

There are several possible reasons for the over-dispersion noted in the “Fit Statistics” table 
(Pearson ratio = 2.37). The data may not follow a binomial distribution, one or more important 
effects may have not been accounted for in the model, or the data are positively correlated.  
 
If important fixed effects have been omitted, then you might need to consider adding them to the 
model. Since this is a designed experiment, it is reasonable not to expect further effects apart 
from the block and entry effects that represent the treatment and error control design structure. 
The reasons for the over-dispersion must lie elsewhere. If over-dispersion stems from 
correlations among the observations, then the model should be appropriately adjusted. The 
correlation can have multiple sources. First, it may not be the case that the plants within an 
experimental unit responded independently. 
 
If the probability of infestation of a particular plant is altered by the infestation of a neighboring 
plant within the same unit, the infestation counts are not binomial, and a different probability 
model should be used. A second possible source of correlations is the lack of independence of 
experimental units. Even if treatments were assigned to units at random, they may not respond 
independently. Shared spatial soil effects, for example, may be the underlying factor. The 
following analyses take these spatial effects into account. 
 
First, assume that the environmental effects operate at the scale of the blocks. By making the 
block effects random, the marginal responses will be correlated due to the fact that observations 
within a block share the same random effects. Observations from different blocks will remain 
uncorrelated, in the spirit of separate randomizations among the blocks.  
 
The next set of SAS statements fits a generalized linear mixed model (GLMM) with random 
block effects: 
 

proc glimmix data=HessianFly; 
class block entry; 
model y/n = entry / solution; 
random block; 
run; 

 
Treating the block effects as random changes the estimates compared to a model with fixed 
block effects.  
 
Selected tables of output are given below.  
 
                      Model Information 
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        Data Set                      WORK.HESSIANFLY 
        Response Variable (Events)    Y 
        Response Variable (Trials)    n 
        Response Distribution         Binomial 
        Link Function                 Logit 
        Variance Function             Default 
        Variance Matrix               Not blocked 
        Estimation Technique          Residual PL 
        Degrees of Freedom Method     Containment 
 
In the presence of random effects and a conditional binomial distribution, PROC GLIMMIX 
does not use maximum likelihood for estimation. Instead, the GLIMMIX procedure applies a 
restricted (residual) pseudo-likelihood algorithm. 
 
The “Dimensions” table has changed from the previous model. The “Dimensions” table indicates 
that there is a single G-side parameter, the variance of the random block effect. 
 
                          Dimensions 
 
               G-side Cov. Parameters         1 
               Columns in X                  17 
               Columns in Z                   4 
               Subjects (Blocks in V)         1 
               Max Obs per Subject           64 
 
Note that although the block effect has four levels, only a single variance component is 
estimated. The Z matrix has four columns, however, corresponding to the four levels of the block 
effect. Because no SUBJECT= option is used in the RANDOM statement, the GLIMMIX 
procedure treats these data as having arisen from a single subject with 64 observations. 
 
The “Optimization Information” table indicates that a Quasi-Newton method is used to solve the 
optimization problem. This is the default method for GLMM models. 
 
                  Optimization Information 
 
       Optimization Technique        Dual Quasi-Newton 
       Parameters in Optimization    1 
       Lower Boundaries              1 
       Upper Boundaries              0 
       Fixed Effects                 Profiled 
       Starting From                 Data 
 
 
The “Fit Statistics” table shows information about the fit of the GLMM. 
 
                        Fit Statistics 
 
           -2 Res Log Pseudo-Likelihood      182.21 
           Generalized Chi-Square            107.96 
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           Gener. Chi-Square / DF              2.25 
 
The generalized chi-square statistic measures the residual sum of squares in the final model and 
the ratio with its degrees of freedom is a measure of variability of the observation about the mean 
model. The over-dispersion parameter (2.25) is still larger than 1.   
 
The variance of the random block effects in the following table is rather small. The random 
block model does not provide a suitable adjustment for dispersion.  
 
                    Covariance Parameter 
                          Estimates 
 
                Cov                  Standard 
                Parm     Estimate       Error 
 
                block     0.01116     0.03116 
 
 
Because the block variance component is small, the Type III test for the variety effect in is 
affected only very little compared to the standard GLM. 
 
               Type III Tests of Fixed Effects 
 
                     Num      Den 
       Effect         DF       DF    F Value    Pr > F 
 
       Entry          15       45       6.90    <.0001 
 

 
In the experimental designs, researchers had row-column (longitude and latitude) values for each 
data to account for spatial scale micro-site variation.  
 
 

Analysis	with	Smooth	Spatial	Trends		

If the environmental effects operate on a spatial scale smaller than the block size, the random 
block model does not provide a suitable adjustment. From the coarse layout of the experimental 
area, it is not surprising that random block effects alone do not account for the over-dispersion in 
the data. We need to add a multiplicative over-dispersion component in PROC GLIMMIX.  
 
   random _residual_; 
 
Such over-dispersion components do not affect the parameter estimates, only their standard 
errors. A genuine random effect, on the other hand, affects both the parameter estimates and their 
standard errors.  
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Ods graphics on/noborder ; 
 proc glimmix data=HessianFly PLOTS=All; 
   class entry ; 
   model y/n = entry / solution ddfm=contain; 
   random _residual_ / subject=intercept type=sp(exp)(lng lat); 
   lsmeans entry / plots=mean(sliceby=entry join); 
 run; 
 
The keyword _RESIDUAL_ in the RANDOM statement instructs the GLIMMIX procedure to 
model the R matrix. Here, R is to be modeled as an exponential covariance structure matrix. The 
SUBJECT=INTERCEPT option means that all observations are considered correlated. The block 
effects can be kept in the model. But correlated R structure sucks out all the variation and does 
not leave anything (zero variance) for Block effect to explain. We dropped the Block effects 
from the final model.  PLOTS=All option produces model diagnostic plots. 
  
                      Model Information 
 
        Data Set                      WORK.HESSIANFLY 
        Response Variable (Events)    Y 
        Response Variable (Trials)    n 
        Response Distribution         Binomial 
        Link Function                 Logit 
        Variance Function             Default 
        Variance Matrix Blocked By    Intercept 
        Estimation Technique          Residual PL 
        Degrees of Freedom Method     Containment 
 
 
                          Dimensions 
 
              R-side Cov. Parameters           2 
              Columns in X                    17 
              Columns in Z per Subject         0 
              Subjects (Blocks in V)           1 
              Max Obs per Subject             64 
 
 
                        Fit Statistics 
 
           -2 Res Log Pseudo-Likelihood      158.85 
           Generalized Chi-Square            121.51 
           Gener. Chi-Square / DF              2.53 
 
 
               Covariance Parameter Estimates 
 
                                             Standard 
        Cov Parm    Subject      Estimate       Error 
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        SP(EXP)     Intercept      0.9052      0.4404 
        Residual                   2.5315      0.6974 
 
The sill of the spatial process, the variance of the underlying residual effect, is estimated as 
2.5315. The one third of practical range of a spatial process is 0.9052.   
 
 
               Type III Tests of Fixed Effects 
 
                     Num      Den 
       Effect         DF       DF    F Value    Pr > F 
 
       entry          15       48       3.60    0.0004 
 
The F value (3.6) for the entry effect has been sharply reduced compared to the previous 
analyses. The smooth spatial variation accounts for some of the variation among the varieties 
 

The following plot compares the LS-means of 
varieties. Varieties with negative LS-means 
have less infestation with Hessian fly.   
 
 
 
 
 
 
 
 
 
 
 

The PLOTS=All statement produces diagnostic plots    
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Conclusions 

In this example three models were considered for the analysis of a randomized block design with 
binomial outcomes.  

If data are correlated, a standard generalized linear model often will indicate over-dispersion 
relative to the binomial distribution. Two courses of action are considered in this example to 
address this over-dispersion.  

First, the inclusion of G-side random effects models the correlation indirectly; it is induced 
through the sharing of random effects among responses from the same block.  

Second, the R-side spatial covariance structure models covariation directly.  

In generalized linear (mixed) models, these two modeling approaches can lead to different 
inferences, because the models have different interpretation. The random block effects are 
modeled on the linked (logit) scale, and the spatial effects were modeled on the mean scale.  

Only in a linear mixed model are the two scales identical.  

 

GLMM	with	ASReml	

ASReml is widely used in genetic data analysis designed experiments. We analyzed Hessian Fly 
data using the following ASReml code. The block effect is fitted as random again.  
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Title: Hessianfly. 
#Damaged,Plants,block,Entry,lat,lng 
#2,8,1,14,1,1 
#1,9,1,16,1,2 
 y 
 N 
 block  * 
 entry  * 
 lat  * 
 lng  * 
 yRatio !=y !/N 
 
Hessianfly.csv  !SKIP 1 
 
y !bin !TOTAL=N ~ mu entry !r block 
 
Partial output from the primary output file (HessianFly.ASR) file is given below.  
 
Distribution and link: Binomial; Logit  Mu=P=1/(1+exp(-XB))                 
                                          V=Mu(1-Mu)/N                        
 Warning: The LogL value is unsuitable for comparing GLM models 
 
 Notice:      1 singularities detected in design matrix. 
   1 LogL=-46.8426     S2=  1.0000         48 df    Dev/DF=   2.671     
   2 LogL=-46.8446     S2=  1.0000         48 df    Dev/DF=   2.671     
   3 LogL=-46.8446     S2=  1.0000         48 df    Dev/DF=   2.671     
   4 LogL=-46.8446     S2=  1.0000         48 df    Dev/DF=   2.671     
   5 LogL=-46.8446     S2=  1.0000         48 df    Dev/DF=   2.671     
 
 Final parameter values                        1.0000     
 Deviance from GLM fit              48      128.23 
 Variance heterogeneity factor [Deviance/DF]     2.67 
 
The heterogeneity factor [Deviance / DF] gives some indication as how well the discrete 
distribution fits the data. A value greater than 1 suggests the data are over-dispersed, that is the 
data values are more variable than expected under the chosen distribution. 
 
 
          - - - Results from analysis of y - - - 
 
 Source       Model  terms     Gamma     Component    Comp/SE   % C 
 Variance        64     48   1.00000       1.00000       0.00   0 F    
 
                            Wald F statistics 
     Source of Variation  NumDF    DenDF    F-inc        P-inc 
   7 mu                     1      48.0     4.64        0.036 
   4 entry                 15      48.0     6.87        <.001 
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Finished: 26 Jul 2011 13:38:06.968   LogL Converged 

 
The F-value for the Entry (plant varieties) is large and significant.  
 
We can adjust for heterogeneity (over-dispersion) by using !DISPERSION qualifier in ASReml. 
The dispersion parameter is estimated from the residuals if not supplied by the analyst. Here is 
the model to account for over-dispersion.  
 
y !bin !TOTAL=N !dispersion ~ mu entry  
 
Output  

                           Wald F statistics 
     Source of Variation   NumDF     DenDF    F-inc     P-inc 
   8 mu                        1      48.0     2.05     0.159 
   4 entry                    15      48.0     3.03     0.002 
 

After adjusting for heterogeneity in the variance we see a much smaller F test for Entry. It is still 
significant. The predictions for plant varieties do not change but their standard errors change.    

 

Spatial	R	structure	with	ASReml	

ASReml is powerful to model the R side of the GLMM models, especially fitting spatial and 
power models. In the following example, we used two dimensional autoregressive order 1 (AR1 
x Ar1) correlation structure for R to account for heterogeneity in data as a demonstration.  

Title: Hessianfly. 
#Damaged,Plants,block,Entry,lat,lng 
#2,8,1,14,1,1 
#1,9,1,16,1,2 
 y 
 N 
 block  * 
 entry  * 
 lat  * 
 lng  * 
 yRatio !=y !/N 
Hessianfly.csv  !SKIP 1 !DOPART 2 
 
!PART 2 
! Generalized Linear Mixed Model with spatial R 
y !bin !TOTAL=N ~ mu entry mv 
1 2 0 
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8 row AR1 0.1 
8 column AR1 0.1 
 
 
Partial output from the primary output file (HessianFly.ASR) file 
 
Deviance from GLM fit              48      130.21 
Variance heterogeneity factor [Deviance/DF]     2.71 
 
 
          - - - Results from analysis of y - - - 
 
 Source       Model  terms     Gamma     Component    Comp/SE   % C 
 Residual   AR=AutoR     8 -0.183224     -0.183224      -1.62   0 U    
 Residual   AR=AutoR     8  0.709363E-01  0.0709363   0.70   0 U    
 
                           Wald F statistics 
     Source of Variation   NumDF     DenDF    F-inc     P-inc 
   8 mu                        1       7.1     5.12     0.058 
   4 entry                    15      43.0     7.42     <.001 
 
 

 
The AR1 structure for residuals was not successful as 
shown by a small correlation (0.0709).  The variance 
heterogeneity factor is still 2.71. Sample variogram of 
residuals based on AR1 x AR1 is given below.  There 
are no apparent trends in the row or column directions, 
but the zigzag surface suggests heterogeneity in the 
data.  
 
 
 
 

 

Example	2:	Binary	response	variable	with	genetic	effects	
 

Variation in resistance to Phytophthora root rot in Turkish and Trojan fir 

Fraser fir, a major Christmas tree is susceptible to Phytophthora root rot. Researchers (John 
Frampton and Fikret Isik) from North Carolina State University have been exploring native firs 
of Turkey as alternative to control disease. They embarked on a cone collection trip in 
northwestern Turkey in 2005. They visited four provenances (geographic regions) of Turkish fir 
and two provenances of Trojan fir. At each provenance, they collected cones from 20 trees. 
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Seedlings were grown in a greenhouse and inoculated with Phytophthora cinnamomi, a soil 
borne pathogen. Subsequently, survival or mortality of each seedling was assessed biweekly. 
Fraser fir was used as control. The objective of the research was to examine the genetic variation 
between and within seed sources of Turkish firs and estimate heritability values for disease 
susceptibility.  

The first 10 lines of data are presented here 

Sort,Rep,Tray,Species,Prov,Family,Tree,Wk2,Wk4,Wk6,Wk8,Wk10,Wk12,Wk14,Wk16 

 1,1,1,Turkish,SAF,120, 1, 0,0,0,0,0,0,0,0 

 2,1,1,Turkish,SAF,120, 2, 0,0,0,0,0,0,0,0 

 3,1,1,Turkish,SAF,120, 3, 0,0,0,0,0,0,0,0 

 4,1,1,Turkish,SAF,120, 4, 0,0,0,0,0,0,0,0 

 5,1,1,Turkish,SAF,120, 1, 0,0,0,0,0,0,0,0 

 6,1,1,Turkish,SAF,120, 6, 0,0,0,0,0,0,0,0 

 7,1,1,Turkish,SAF,120, 7, 0,0,0,0,0,0,0,0 

 8,1,1,Turkish,SAF,120, 8, 0,0,0,0,0,0,0,0 

 9,1,1,Turkish,SAF,120, 9, 0,0,0,0,0,0,0,0 

10,1,1,Turkish,SAF,120,10, 0,0,0,0,0,0,0,0 

 
The means were plotted against time (weeks) to examine the trends (linear, quadratic etc.) in 
disease incidence but also visually depict the interactions of species and provenances with time.  

 
 

Mortality means (%) of fir species over time. 
The mean mortality of Fraser fir was 97%, 

Plot of 105 family profiles and the average 
trend of mortality (thick red line) over time. 
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whereas the mean mortality of Trojan (56.5%) 
and Turkish (35%) were considerably smaller. 

The blue lines are Trojan fir families. Black 
lines are families from Turkish fir.  

 

The probability of mortality ( ) of a seedling was modeled with the generalized linear mixed 
model using a logit (canonical) link function to partition phenotypic variance into genetic and 
environmental components. 

ηijkl = log [π/(1-π)] =  µ + Ri + Pj + RPij + F(P)k(j) + RF(P)ik(j) + eijkl     
 

Where;  
ηijk is the link function [g(µ)],   
µ is the conditional mean,  
π is the proportion of seedlings,  
Ri is the fixed effect of the ith replication,  
Pj is the fixed effect of the jth provenance,  
RPij is the fixed interaction effect between ith replication and jth provenance,  
F(P)j(k) is the random effect of kth family nested within provenance with N(0, Iσ2f(p)),  
RF(P)ij(k) is the random interaction of the kth family and ith replication with N(0, σ2rf(p)), and  
eijkl is the random residual with N(0, Iσ2e).  
 
The model was run using the ASReml software (Gilmour et al. 2009).  
 
Title: Pc inoculation 
 Sort  * 
 Rep  *   # Rep is numeric 
 Tray  *   # Tray is numeric 
 Species !A    # Specify is alpha numeric, 1 level 
 Prov  !A      # Provenance is alpha numeric, 3 levels 
 Family  !I  # Family Id is non-integer numeric 
 Tree  * 
 Wk_2     Wk_4    Wk_6     Wk_8 
 Wk_10    Wk_12   Wk_14    Wk_16 
 
Tfir_dat.csv !SKIP 1 !DOPART 1  # Data file 
 
!PART 1 
Wk_16  !bin !logit ~ mu Rep*Prov  ,        # Specify fixed model 
        !r Prov.Family Rep.Prov.Family  # Random effects 
 

WK_16 is the response variable.  

Here is a simple ASReml command file written using a text editor (ConTEXT) with more 
description.  

p̂
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Notice that we define the distribution using the !BIN qualifier (binomial) and underlying link 
function using !LOGIT qualifier in ASReml. The logit is the default link function. The variance 
on the underlying scale is p2/3 = 3.28987=~ 3.298 (underlying logistic distribution) for the logit 
link (Gilmour et al. 2006). 

The results are  

ASReml 3.0 [01 Jan 2009]   Title: Pc inoculation master thru wk16 filtered. 
   Build fl [ 2 Sep 2009]   64 bit 
 31 Jul 2011 11:52:06.419     32 Mbyte Windows x64  Tfir21_Wk_16 
 Licensed to: North Carolina State University    30-sep-2011          
 *********************************************************** 
 * Contact support@asreml.co.uk for licensing and support  * 
 ***************************************************** ARG * 
 Folder: C:\Users\fisik\Documents\_Research\PROJECTS\Christmas 
Tree\Phytophthora Inoculations\ASREML 
  Rep  *    !SKIP 1 
  Species !A 
  Prov  !A 
  Family  !I 
 QUALIFIERS: !SKIP 1                !DDF 2 
 ! Turkish fir 
 QUALIFIER: !DOPART    1 is active 
 Reading Tfir_dat.csv  FREE FORMAT skipping     1 lines 
 
 Univariate analysis of Wk_16 
 Summary of 3662 records retained of 3675 read 
 
  Model term       Size #miss #zero   MinNon0    Mean      MaxNon0  StndDevn 
   1 Rep              4     0     0      1     2.4913          4 
   2 Tray             9     0     0      1     4.6182          9 
   3 Species          2     0     0      1     1.0000          1 
   4 Prov             4     0     0      1     2.5800          4 
   5 Family          66     0     0      1    32.8610         66 

Linear Model - Factor names 
are case sensitive. plot ¹Plot 

Data file name. Skip header 

You MUST have a TITLE 

Field definitions in the 
data  

!A Alphanumeric fields are taken as factors. There are 914 
subjects 

!I Count integer level 

* Sequential integer fields are taken as simple factors 
 

Missing fields and those with decimal points are taken as 
covariates 

There MUST be 
a blank field 

before names 
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   6 Tree            18     0     0      1     7.0866         18 
   7 Wk_2                   0  3662  0.000      0.000      0.000      0.000 
   8 Wk_4                   0  3578  1.000     0.2294E-01  1.000     0.1497 
   9 Wk_6                   0  3394  1.000     0.7318E-01  1.000     0.2605 
  10 Wk_8                   0  3176  1.000     0.1327      1.000     0.3393 
  11 Wk_10                  0  2988  1.000     0.1841      1.000     0.3876 
  12 Wk_12                  0  2751  1.000     0.2488      1.000     0.4324 
  13 Wk_14                  0  2531  1.000     0.3088      1.000     0.4621 
  14 Wk_16     Variate      0  2379  1.000     0.3504      1.000     0.4771 
  15 mu               1 
  16 Rep.Prov        16  1 Rep       :   4   4 Prov           :    4 
  17 Prov.Family    264  4 Prov      :   4   5 Family         :   66 
  18 Rep.Prov.Family 1056  1 Rep       :   4  17 Prov.Family    :  264 
 Forming    1345 equations:  25 dense. 
 Initial updates will be shrunk by factor    0.010 
 Notice: Algebraic Denominator DF calculation is not available 
         Numerical derivatives will be used. 
 Distribution and link: Binomial; Logit  Mu=P=1/(1+exp(-XB)) 
                                          V=Mu(1-Mu)/N 
 Warning: The LogL value is unsuitable for comparing GLM models 
 Notice:      9 singularities detected in design matrix. 
   1 LogL=-4751.08     S2=  1.0000       3646 df    Dev/DF=   1.126 
   2 LogL=-4751.23     S2=  1.0000       3646 df    Dev/DF=   1.126 
   3 LogL=-4752.53     S2=  1.0000       3646 df    Dev/DF=   1.124 
   4 LogL=-4757.13     S2=  1.0000       3646 df    Dev/DF=   1.119 
   5 LogL=-4765.90     S2=  1.0000       3646 df    Dev/DF=   1.114 
   6 LogL=-4778.73     S2=  1.0000       3646 df    Dev/DF=   1.109 
   7 LogL=-4785.19     S2=  1.0000       3646 df    Dev/DF=   1.106 
   8 LogL=-4786.54     S2=  1.0000       3646 df    Dev/DF=   1.106 
   9 LogL=-4786.64     S2=  1.0000       3646 df    Dev/DF=   1.106 
  10 LogL=-4786.64     S2=  1.0000       3646 df    Dev/DF=   1.106 
  11 LogL=-4786.64     S2=  1.0000       3646 df    Dev/DF=   1.106 
 Final parameter values              0.45778    0.12291     1.0000 
 
 Deviance from GLM fit       3646     4031.00 
 Variance heterogeneity factor [Deviance/DF]     1.11 
 
          - - - Results from analysis of Wk_16 - - - 
 Notice: While convergence of the LogL value indicates that the model has 
stabilized, its value CANNOT be used to formally test differences between 
Generalized Linear (Mixed) Models. 
 
          Approximate stratum variance decomposition 
 Stratum     Degrees-Freedom   Variance      Component Coefficients 
 Prov.Family           39.25    2.06632         4.2     1.0 
 Rep.Prov.Family       11.64   0.122911         0.0     1.0 
 
 Source                Model  terms     Gamma     Component    Comp/SE   % C 
 Prov.Family             264    264  0.457785      0.457785       4.14   0 P 
 Rep.Prov.Family        1056   1056  0.122911      0.122911       2.41   0 P 
 Variance               3662   3646   1.00000       1.00000       0.00   0 F 
 
                                   Wald F statistics 
     Source of Variation           NumDF     DenDF    F-inc            P-inc 
  15 mu                                1      58.7    60.66            <.001 
   1 Rep                               3     158.6     6.09            <.001 
   4 Prov                              3      59.1     9.79            <.001 
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  16 Rep.Prov                          9     167.8     0.85            0.567 
 Notice: The DenDF values are calculated ignoring fixed/boundary/singular 
             variance parameters using numerical derivatives. 
 
 Warning: These Wald F statistics are based on the working variable and are 
 not equivalent to an Analysis of Deviance. Standard errors are scaled by the 
variance of the working variable, not the residual deviance. 
  17 Prov.Family              264 effects fitted (     198 are zero) 
  18 Rep.Prov.Family         1056 effects fitted (     792 are zero) 
 Finished: 31 Jul 2011 11:52:09.270   LogL Converged 
 

We are interested in the variance components (Component) in this study to understand the effect 
of genetics and environment on the disease incidence. Heritability will tell us about the effects of 
genetics (family differences) on the incidence compared to phenotypic variance.  

The family effect and other random effects are on logistic scale with a variance of 3.28987=p2/3 
(Gilmour et al. 1985).  Because we have wind-pollinated families assumed to be half-siblings, 
variance explained by family effect is 1/4 of additive genetic variance (Falconer and Mackay 
1996). The total additive genetic variance would be 4* Var(Prov.Family).  

We are mostly interested in selection of families and thus the heritability of interest would be 
family mean heritability.  

ℎ¯$ =
°±(²)
³

u°±(²)
³ ´	

µ¶±(²)
³

¶ 	´	µ·
³

¸ v
     

Where 𝜎 (¹)
$ is the aggregate family variance component across provenances, 𝜎º¯(¹)

$ is the 
replication by family interaction variance, 𝜎�$ is the fixed error variance, r is the number of 
replications and n is the number of seedlings per family. The error variance was set to 3.29 in 
calculation of phenotypic variances as suggested by Gilmour et al. (1985). Standard errors of 
heritabilities were estimated using Delta method (Lynch and Walsh 1998).  

The denominator in the above formula is the phenotypic variance of family means, r is the 
number of replications (4), and n is the number of seedlings per family (on average it is 52 
seedlings). Using the numbers from the output file given above column named ‘Component’, the 
heritability would be = 0.457785 / (0.457785 + 0.1229/4 + 3.29/52)   = 0.83 

 

We can use ASReml to calculate all sorts of functions of variance components.  

Title: Pc inoculation 
 Sort  * 
 Rep  *   # Rep is numeric 
 Tray  *   # Tray is numeric 
 Species !A    # Species is alpha numeric, 1 level 
 Prov  !A      # Provenance is alpha numeric, 3 levels 
 Family  !I  # Family Id is non-integer numeric 
 Tree  * 
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 Wk_2     Wk_4    Wk_6     Wk_8 
 Wk_10    Wk_12   Wk_14    Wk_16 
 
Tfir_ped.csv !SKIP 1 !MAKE !ALPHA !GROUPS 4 # Pedigree file 
Tfir_dat.csv !SKIP 1 !DOPART 1  !CONTINUE  # Data file 
 
!PART 1 
Wk_16  !bin !logit ~ mu Rep*Prov  ,     # Specify fixed model 
        !r Prov.Family Rep.Prov.Family  # Random effects 
!PIN !DEFINE  
P Total 1+2+3*3.29                 # 4 Total Variance 
P Pheno 1+2+3*3.29                 # 5 Phenotypic Variance 
P Pheno_FamMean 1+2*0.25+3*0.0598  # 6 Family Mean Phen Variance 
P ErrorVar 3*3.29                  # 7 Error Variance 
P AddVar 1*4                       # 8 Additive Genetic Variance 
H Percent_Fam 1 4                        # % Variance of Family(Prov) 
H Percent_RepFam 2 4                     # % Variance of Rep*Family 
H Percent_Error 7 4                      # % Variance of Error 
H H2I 8 5                       # Individual Tree herit 
H H2F 1 6                       # Family Mean Heritability 
 

Output 

   4 Total  1       3.871      0.1166 
   5 Pheno  1       3.871      0.1166 
   6 Pheno_Fam  1  0.5483      0.1099 
   7 ErrorVar  3    3.290       0.000     
   8 AddVar  1      1.831      0.4421     
     P_Fam        = Family     1/Total  1   4= 0.1183    0.0254 
     P_RepFam     = Rep.Fami   2/Total  1   4= 0.0318    0.0129 
     P_Error      = ErrorVar   7/Total  1   4= 0.8500    0.0256 
     H2I          = AddVar     8/Pheno  1   5= 0.4731    0.1016 
     H2F          = Family     1/Pheno_Fa   6= 0.8349    0.0403 
Notice: The parameter estimates are followed by their approximate 
standard errors. 
 
Additive genetic variance is 1.83 ± 0.442. Family effect explained about 12% of total variance 
(0.118) observed in the study. Family mean heritability is 0.83 which is high, suggesting that if 
we select families with low disease incidence and use them for plantations, we will be able to 
control the disease successfully.  
 
 

Accounting	for	Genetic	Groups	Effect	
 
Provenances can be considered genetic groups or founders in the data because the F-test showed 
significant differences between provenances for mortality. We fit Provenance as a fixed effect in 
the GLMM model above to account for their effects on the variances components, or adjust for 
Provenance effect while estimating family variance (Prov.Family term in the model above).  
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The following are a few lines from the prediction file of ASReml (.sln). The predictions from the 
model are on the logit scale and they do not include the Provenance effect in which they were 
sampled.  
 
  EFFECT    LEVEL  BLUP    Stderr 
  Family      ULU      0.3549      0.2242 
  Family      AKY       0.000       0.000 
  Family      BOL      -1.086      0.2838 
  Family      SAF      -1.150      0.2553     
  Family      1         1.376      0.2915     
  Family      2        0.6037      0.3092     
  Family      3       -0.9268      0.4280 
  Family      4        0.4487      0.3716    
 
In order to rank families across the provenances we need to add the predicted values of 
Provenances to the families. Let’s assume the families 1, 2 and 3 are from ULU provenance and 
family 4 is from BOL provenance. The predictions of those families would be  
 
It is also more straightforward to interpret probabilities (which range between 0 and 1) than 
predictions on the logit scale. In order to obtain the probabilities, we need to apply the inverse of 
link function.    

  = exp( û) / [1 + exp(û)]  

Where, û is the vector of solutions for families (Best Linear Unbiased Prediction (BLUP)).  
Predicted probability values ( ) range between 0.0 and 1.0. A high probability value indicates a 
high probability of mortality.   
 
 
Family 
ID 

GCA 
 

Breeding 
value (2*GCA) 

Provenance  Sum Predicted 
probability  

1 1.376 2.7520 ULU = 0.3545 3.1065 0.96 
2 0.6073 1.2146 ULU = 0.3545 1.5691 0.83 
3 -0.9268 -1.8536 ULU = 0.3545 -1.4991 0.18 
4 0.4487 0.8974 BOL= -0.1086 1.2519 0.78 

 
Family 1 has the predicted probability of 0.96 for mortality, whereas family 3 had only 0.18 
probability of mortality.  
 

Example	for	rust	disease	in	pines		
 
Fusiform rust disease caused by a fungus is a serious threat to pine plantations in the southern 
United States. Offspring of four crosses (full-sib families) were cloned to select disease resistant 
clones for deployment. The total number of clones used in the experiment was 282. A 

p̂

p̂
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randomized complete block design was used with 9 replications. Each clone had one copy in a 
block (single-tree plot design). Block effect was considered fixed and the family and clone 
effects were random. When the trees were 3 years old in the field, the presence=1 and absence=0 
of disease (galls) were recorded. We are interested in partitioning phenotypic variance into 
genetics and environmental components and to predict genetic values of clones. (Isik et. al. 2005. 
Predicted genetic gains and testing efficiency from two loblolly pine clonal trials. Canadian J. 
Forest Research 35: 1754-1766). 

The probability of infection (p) of a single tree was modeled with the generalized linear mixed 
model using a logit (canonical) link function. 

ηijk = log [p/(1-p)] =  µ + ri + fj + c(f)kj + eijk   

in a matrix form the model is 

 η  = µ + Xβ + Zu + e  

where ηijk is the link function g(µ), and µ is the conditional mean, p is the proportion of infected 
trees, ri is the fixed effect of the ith block, fj is the random effect of the jth family with N(0, Iσ2f), 
c(f)kj is the random effect of the kth clone within the jth family with N(0, Iσ2c(f)), and eijk is the 
random residual with N(0, Iσ2e).  

The variance of observations is 

Var(y) = E[Var( y| u)] + Var[E( Y| u)] 

= A1/2RA1/2 + ZGZT 

Where the A is diagonal matrix and contains the variance function of the model. That is A =  
diag{p(1-p)} and p = Pr (yi = 1). The R is the variance matrix for residuals random effects. The 
vector of random effects u, was assumed to be multivariate normal with a variance-covariance 
matrix of G=Var(u) (SAS Institute Inc. 1996). The Z and ZT are design matrix and transposed 
design matrix, respectively, for random effects. The validity of the model fitted to the rust data 
and the predicted values of clones are closely related to the average rust infection. The average 
infection in the experiment was 0.38. We assumed that an average rust infection 0.38 is within 
acceptable boundaries. An infection average smaller than 0.2 or greater than 0.8 would be 
associated with high environmental variance (error) not suitable for analysis.  

Because linear predictors for rust infection were computed on a logit scale, the solutions from the 
generalized linear mixed model are difficult to interpret. Therefore, predicted probabilities ( ) 
of the clones were calculated by applying the inverse of the link function and using the BLUP of 
the random solution vector (û). 

 = [exp[Xb+ û)] / [1 + exp(Xb+û)]  

p̂

p̂
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Where, X is the design matrix for fixed effects, b is the solutions for fixed effects (i.e., the 
intercept), and û is the solution for random effects or the Best Linear Unbiased Prediction 
(BLUP) of clones.  Clone rust infection predicted probability values ( ) range between 0.0 and 
1.0. A high probability value for a clone indicates a high probability of disease infection.  These 
values are best linear unbiased predictors for clones. 
 
Using variance components, we can easily calculate repeatability of clone means or heritability 
of clone means.  
 

H2 = σ2c / [σ2c + σ2e / n] 
 
Where H2 is the repeatability of clone means, σ2c is the variance explained by the clone effects, 
σ2e is the variance of residuals which is fixed to 3.29, and n is the number of trees per clone in 
the experiment.  
 
 
Fitting the model with ASReml 
 
ASReml command file (.AS) 
 
Loblolly Clonal data, MWV SC 
 block       9  !I    # There are 9 reps 
 family      4  !A    # there are 4 parents 
 clone     282  !A    # clone 
 height1 
 height2 
 height3 
 rust3                # 1=infected, 0=no infection 
c:\research\handbook\data\MW_rust_data.csv !SKIP 1  
# file has 1 header line 
 
#univariate for rust  age 3 
rust3 !BIN !LOGIT ~ mu block  !r family clone 
 
 
Variance components from ASReml .ASR output file 

 
Source         Model  Gamma        Component    Comp/SE   % C 
 
 fam           4  0.579831      0.579831       1.10   0 P    
 clone         1128  2.70983       2.70983        7.94   0 P    
 Variance      2369  1.00000       1.00000        0.00   0 F    

The variance due to clone differences explained a large proportion of disease incidence (2.7098). 
Family component was 0.5798. The repeatability of clones is calculated as follows.  

H2 = σ2c / [σ2c + σ2e / n]  

=  2.7 / [2.7 + (3.3 / 4.3) ]  

p̂
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Partial output from .SLN prediction output file   

       
Effect   Level   Estimate   Std error 

  mu                   1              -1.046       0.4251     
  fam                  F               0.2428      0.4295     
  fam                  H               0.0354   0.4307     
  fam                  I              -0.9985      0.4398     
  fam                  K               0.7203      0.4242     
  fam.clone            F.F0101        -1.213       1.137 
  fam.clone            F.F0103         0.7804      0.7163     
  fam.clone            F.F0104        -1.364       1.099     
  fam.clone            F.F0107        -1.306       1.114     
 
Best linear unbiased estimates of some clones on measured scale (inverse link) are given below. 
The last column (inverse link) is back-transformed predicted probability (BLUP) of the clones 
after adding the MU to the ESTIMATE as follows.  
 

p= exp[mu + BLUP(clone)] / [1+exp(mu + BLUP(clone)] 
 
 

Clone  Estimate Std Err Inverse link 
 
F.F0101 -1.213 1.137  0.09 
F.F0103  0.7804 0.7163 0.43 
F.F0104 -1.364 1.099  0.08 
F.F0107 -1.306 1.114  0.09 
F.F0108 -1.303 1.115  0.09 
F.F0110 -1.292 1.118  0.09 
F.F0111  0.8226 0.7198 0.44 
F.F0112  1.118 0.6705 0.52 
F.F0113 -0.4338 0.8745 0.19 
F.F0116  0.7804 0.7163 0.43 

Clone F0104 had the lowest probability of disease infection ( = 0.08), whereas clone F0112 
had the highest probability of infection. Assuming a probability of infection of 0.50 for a 
Checklot family, how much genetic gain can be realized if the top 3 clones are selected over the 
Checklot tree? 

 

Fitting the model with the SAS GLIMMIX 
 
The following code imports comma separated value data into SAS environment. 
 

Proc import out= WORK.rust 
  datafile= “C:\research\handbook\data\MW_rust_data.csv”  

p̂
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     dbms=CSV replace; 
     getnames=YES; 
     datarow=2;  
run; 
 

Fitting the model using SAS GLIMMIX procedure.  
 
proc glimmix data=rust asycov; 
   class rep fam clone ; 
   model rust3 (event='1')= rep /s dist=binary link=logit; 
   random fam clone /s ; 
   output out=p pred(blup ilink)=predicted lcl=lower ; 
   ods output solutionr=s_r solutionf=s_f; 
   ods exclude solutionr solutionf; 
run; 

 
1. In the MODEL statement, the probability of the event=1 (infection) is modeled. If you do 

not specify the event, the code may choose 0, depending on the order. After the slash in 
MODEL, Best Linear Unbiased Estimates of fixed effects (BLUEs) are requested. The 
distribution of data is defined as binary (DIST=BINARY) and LOGIT link function is 
used for transformation.  

2. FAM and CLONE effects are random. Best linear unbiased predictors (BLUP) of random 
effects are requested using /S option.  

3. In the OUTPUT OUT statement inverse link of BLUP estimates were requested with the 
lower confidence level (LCL). 

4. The ODS OUTPUT statement creates two data sets; one for random effects predictions 
and one for fixed effects estimates.  

 
 

OUTPUT 
 
                    The GLIMMIX Procedure 
 
                     Model Information 
 
          Data Set                     WORK.RUST 
          Response Variable            rust3 
          Response Distribution        Binary 
          Link Function                Logit 
          Variance Function            Default 
          Variance Matrix              Not blocked 
          Estimation Technique         Residual PL 
          Degrees of Freedom Method    Containment 
 
 
  Class Level Information 
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   Class    Levels    Values 
 
   rep           9    1 2 3 4 5 6 7 8 9 
   fam           4    F H I K 
   clone       282    F0100 F0101 F0103 F0104 F0107 F0108 F0110 
 
                Number of Observations Read        2528 
                Number of Observations Used        2369 
 
 
                            Response Profile 
 
                  Ordered                        Total 
                    Value    rust3           Frequency 
 
                        1    0                    1831 
                                     2    1                     538 
 
The GLIMMIX procedure is modeling the probability that rust3='1'. 
 
The order of the outcome (observations) whether it is 0 or 1 is important. Check above table to 
make sure modeling the ’event=1’.  
 
 
                             Dimensions 
 
                  G-side Cov. Parameters         2 
                  Columns in X                  10 
                  Columns in Z                 286 
                  Subjects (Blocks in V)         1 
                  Max Obs per Subject         2369 
 
 
                      Optimization Information 
 
           Optimization Technique        Dual Quasi-Newton 
           Parameters in Optimization    2 
           Lower Boundaries              2 
           Upper Boundaries              0 
           Fixed Effects                 Profiled 
           Starting From                 Data 
 
 
                    Iteration History 
 
  Convergence criterion (PCONV=1.11022E-8) satisfied. 
 
 
                     Fit Statistics 
 



 

45 
 

        -2 Res Log Pseudo-Likelihood    11916.75 
        Generalized Chi-Square           1469.74 
        Gener. Chi-Square / DF              0.62 
 
 
                  Covariance Parameter 
                        Estimates 
 
              Cov                  Standard 
              Parm     Estimate       Error 
 
              fam        0.5798      0.5285 
              clone      2.7098      0.3439 
 
 
             Type III Tests of Fixed Effects 
 
                   Num      Den 
     Effect         DF       DF    F Value    Pr > F 
 
     rep             8     2079       6.39    <.0001 
 
The output includes model information, variance components as well as solutions for fixed 
effects (BLUE) and solutions for random effects (BLUPs). The following is a partial output from 
the S_R (prediction file for random effects) file.  
 

 
          Solution for Random Effects 
 
   Effect    fam    clone    Estimate      Std Err        
 
   fam       F                -0.2428      0.4295      
   fam       H               -0.03543      0.4307      
   fam       I                 0.9985      0.4398      
   fam       K                -0.7203      0.4242      
   clone            F0101      1.2134      1.1374      
   clone            F0103     -0.7804      0.7163      
   clone            F0104      1.3638      1.0992      
   clone            F0107      1.3064      1.1138      
   clone            F0108      1.3030      1.1146      

 
The “Estimate” column displays the BLUP estimates on the logit scale. Since linear predictors 
for rust incidence were computed on logit scale, predicted probability (p) of random effects can 
be calculated by applying the inverse link function. For example, probability of a clone being 
infected by the disease can be calculated as follows: 
 

p= exp[mu + BLUP(clone)] / [1+exp(mu + BLUP(clone)] 
 
 

clone  Estimate StdErr inverse link 
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F0101  -1.213 1.137  0.08 
F0103  0.780  0.716  0.37 
F0104  -1.364 1.099  0.07 
F0107  -1.306 1.114  0.07 
F0108  -1.303 1.115  0.07 
F0110  -1.292 1.118  0.07 
F0111  0.823  0.720  0.38 
F0112  1.118  0.671  0.46 
F0113  -0.434 0.874  0.15 
F0116  0.780  0.716  0.37 

 
The predicted probabilities of clones are similar to what we calculated from ASReml.  
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