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ARTICLE INFO ABSTRACT

Keywords: Viewscapes are the visible portions of a landscape that create a visual connection between a human observer and

DEM their 3-dimensional surroundings. However, most large area line-of-sight studies have modeled viewscapes using

Land change bare-earth digital elevation models, which exclude the 3-D elements of built and natural environments needed to

Land?cape aesthetics comprehensively understand the scale, complexity and naturalness of an area. In this study, we compared

"[M‘ol;l-t;-:f;lr‘:opy viewscapes derived from LiDAR bare earth (BE) and top-of-canopy (ToC) surface models for 1000 exurban

Visual quality homes in a region of the Rocky Mountains, USA that is experiencing rapid low-density growth. We examined the
extent to which the vertical structure of trees and neighboring houses in ToC models — not accounted for in BE
models — affect the size and quality of each home’s viewscape. ToC models consistently produced significantly
smaller viewscapes compared to BE models across five resolutions of LiDAR-derived models (1, 5, 10, 15, and 30-
m). As resolution increased, both ToC and BE models produced increasingly larger, exaggerated viewscapes. Due
to their exaggerated size, BE models overestimated the greenness and diversity of vegetation types in viewscapes
and underestimated ruggedness of surrounding terrain compared to more realistic ToC models. Finally, ToC
models also resulted in more private viewscapes, with exurban residents seeing almost three times fewer
neighbors compared to BE models. These findings demonstrate that viewscape studies should consider both
vertical and horizontal dimensions of built and natural environments in landscape and urban planning appli-
cations.

1. Introduction Viewscapes are modeled using line-of-sight principles (Fig. 1) with

varying levels of complexity and precision depending on the purpose

Viewscapes are the visible portions of a landscape that visually
connect human observers to their 3-dimensional surroundings
(Burcher, 2005). The premise that humans make important visual
connections with the environment is central to both the theory and
practice of landscape and urban planning. Viewscapes have been con-
sidered across a range of domains, from the design of built environ-
ments in landscape architecture (Garnero & Fabrizio, 2015; Lindsey,
Wilson, Yang, & Alexa, 2008) and assessment of the visual character
and impacts of roadways through parks and scenic areas
(Chamberlain & Meitner, 2013; Martin, Ortega, Otero, & Arce, 2016), to
hiding unsightly land uses, such as landfills (Alexakis & Sarris, 2014;
Geneletti, 2010), or scars from extraction of natural resources, such as
forest clear-cutting for timber harvest (Chamberlain,
Meitner, & Ballinger, 2015; Domingo-Santos, de Villaran, Rapp-
Arraras, & de Provens, 2011). Recently, Vukomanovic and Orr (2014)
modeled viewscapes over large areas to understand preferences that
motivate housing developments in rural regions.

and scale of the application. For example, landscape architects and city
planners may directly measure features of a built or natural environ-
ment from one vantage point and a single line-of-sight direction of
major interest, such as assessing amenities seen from a hill of a pro-
posed park or a new neighborhood. Resulting viewscapes may be vi-
sualized as digitally manipulated photographs (Pasewaldt, Semmo,
Trapp, & Dollner, 2014) or immersive virtual environments (Huang,
Jiang, & Li, 2001; Tabrizian et al., 2016). For landscape-scale applica-
tions that require numerous vantage point locations and cover larger
areas (e.g. several square kilometers), viewscapes are typically modeled
in a geographic information system (GIS) using 360-degree line-of-sight
algorithms. These algorithms identify all grid cells of a digital elevation
model (DEM) surface that are visible from a given location.

Most large area line-of-sight studies modeled viewscapes using bare-
earth models, which exclude the 3D structural elements of vegetation
and human infrastructure needed to comprehensively understand the
scale, complexity and naturalness of an area (e.g. Fisher & Tate, 2006;
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Wilson, 2012). Moderate resolution (e.g. 10-m, 30-m) photogrammetry-
derived DEMs are the most commonly used data in landscape-scale
studies, but as finer-resolution DEMs (1-m) have become available, they
are increasingly used to derive viewsheds and improve viewscape re-
search (Wu, Pan, Yao, & Luo, 2007). Frontiers in LiDAR (Light Detection
and Ranging) remote sensing are enabling researchers to map both
vertical and horizontal patterns in locational data (Wehr & Lohr, 1999).
LiDAR remote sensing collects 3D point clouds of the Earth’s surface by
measuring the travel time of laser pulses between the sensor and earth
objects (Wehr & Lohr, 1999). Using multiple-return LiDAR data, Singh,
Chen, McCarter, and Meentemeyer (2015) and Singh, Davis, and
Meentemeyer (2015) recently measured the spatial distribution of tree
biomass and invasive understory plants in urban forests to understand
threats to green infrastructure in a rapidly urbanizing region. Re-
cognizing the need to integrate this vertical dimension of vegetation
into viewshed analyses, Guth (2009) argued that LiDAR data offer great
potential for explicitly considering visual obstructions by vegetation
and infrastructure and improving visibility across digital elevation
models (DEM). Two studies have begun to explore the utility of LIDAR
for modeling 3-D viewscapes, but were limited to a small sample of
forest field plots on undevelopable federal land (e.g. Murgoitio,
Shrestha, Glenn, & Spaete, 2013) or considered the role that 3D view-
scapes play in a coastal real estate market without comparison to tra-
ditional bare-earth models (Hindsley, Hamilton, & Morgan, 2013).

In this study, we compare viewscapes measured from LiDAR-de-
rived bare earth (BE) and top-of-canopy (ToC) surface models for 1000
exurban homes situated in a foothills region of the Rocky Mountains,
USA that is experiencing rapid population growth with low-density
development. We examine the extent to which the vertical structure of
built and natural features in ToC models affect the size and quality of
each home’s viewscape. We develop spatial models that characterize
terrain ruggedness and the greenness and diversity of natural vegeta-
tion in each viewscape. We further examine differences between ToC
and BE viewscapes across five resolutions of LiDAR data (1, 5, 10, 15,
and 30-m) to determine if results are consistent across scales. As LiDAR
remote sensing and advanced techniques for line-of-sight models be-
come increasingly accessible, this study can help guide decisions re-
garding whether or not to consider both vertical and horizontal di-
mensions of viewscapes in landscape and urban planning applications.

2. Methods
2.1. Study region

Boulder County forms part of the Colorado Front Range (COFR) on
the eastern side of the Western Continental Divide of North America
(Fig. 2). Protected open space, farms and ranches, and suburban re-
sidential development surround the city of Boulder (Lenth,
Knight, & Gilgert, 2006). Vegetation of the COFR varies along en-
vironmental gradients of topography, geology and climate, with
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Fig. 1. Viewscape conceptual diagram. Portions of
the landscape represented by blue, dashed lines are
visible from the home of interest (black). Landscape
features, such as houses (blue) and trees (green), are
visible in these parts of the landscape; gray features
and portions of the landscape represented by black,
solid lines are obstructed by vertical elements, such
as trees or peaks, and are not visible as they lie
outside the line-of-sight. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 2. Study area. Points represent 1000 randomly selected exurban homes in Boulder

County, CO, situated in the forested foothills above the lower tree line (1800-m eleva-
tion).

o

grasslands and shrublands dominating low elevation landscapes and
forests starting at approximately 1800-m altitude to the west of the city.
Lower montane forests commonly include stands of ponderosa pine
(Pinus ponderosa), sometimes mixed with Douglas fir (Pseudotsuga
mengiesii) in more mesic areas (Burns & Honkala, 1990). Above 2500-m
in upper montane forests, lodgepole pine (Pinus contorta), aspen (Po-
pulus tremuloides), limber pine (Pinus flexilis), and Douglas-fir commu-
nities often co-occur (Veblen & Donnegan, 2005).

The American West is the only U.S. region where rural population
growth is increasing faster than growth in metropolitan areas (Lenth
et al., 2006). Expansive exurban development has accompanied these
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recent changes, with 27% of Boulder County now considered part of the
Wildland-Urban Interface (WUI; Radeloff et al., 2005). Residents of the
Boulder WUI are wealthier, older, and more educated than the residents
of the state of Colorado overall (Champ, Brenkert-Smith, & Flores,
2011). For example, 80% of the residents (average age = 55) of the
Boulder County WUI hold College degrees with 48% of households
having yearly incomes greater than $100,000 (Champ et al., 2011). In
contrast, according to the 2010 US Census, the average age of residents
in Colorado is 36, with 37% of the population holding College degrees
and 9% of households earning more than $100,000/year. These socio-
economic factors contribute to exurbanites’ locational freedom and
their ability to make the viewscape an expression of choice in housing
decisions (Vukomanovic & Orr, 2014).

2.2. Housing data

We acquired publicly available geocoded data of all recorded house
sales transactions in Boulder County, Colorado, from 1950 through
2010 (Boulder County Assessor’s Office, 2015). For analysis, we ran-
domly selected 1000 single-family residences (SFRs) located above
1800-m where the lower montane forest begins above the plains
(Burns & Honkala, 1990) and where most exurban housing occurs
(Fig. 2). SFRs represent the vast majority of homes in exurban and rural
areas of the study system; less than 1% of WUI residents in Boulder
County live in condominiums, mobile homes, or apartment buildings.
Approximately 98% of WUI residents own their current homes, and
more than 90% of households live in their residence full-time (Champ
et al.,, 2011). Our 1000 randomly selected residences are located in a
region that meets the common definition of exurban housing density
(0.68-16.18 ha per unit; Theobald, 2005). We verified locational ac-
curacy of these data through visual inspection of high-resolution ima-
gery from the National Agriculture Imagery Program (NAIP).

2.3. LiDAR data — bare earth and top of canopy models

We obtained 776 tiles of multiple-return LiDAR data
(~1.5 x 1.5km each) from the Colorado GeoData Cache (geodata.-
co.gov). The LiDAR data were acquired during May and September
2014. These data include five returns plus intensity, with a point cloud
spacing ranging from 0.31-0.70 m. We used ground, and first-return
LiDAR points to derive continuous BE and ToC surface models at
multiple raster resolutions (1m, 5m, 10m, 15m, and 30m). We calcu-
lated the raster values for each resolution by applying a linear inter-
polation algorithm to a triangulated irregular network of the LiDAR
point cloud (Lloyd & Atkinson, 2002). We normalized the BE model
derived from the first return LiDAR points to produce a ToC model
surface that includes natural and human-made features (Priestnall,
Jaafar, & Duncan, 2000). We retained vertical data within a height
range of 1.5-65 m above bare earth to remove understory vegetation
(< 1.5 m) and human-made objects taller than 65 m (e.g. radio towers).
Finally, we supplanted ToC surface model values with BE model values
for a 90 X 90 m area around each home site to ensure that the 1000
single-family residences do not themselves obscure subsequent calcu-
lations of each viewscape.

2.4. Measuring exurban viewscapes with visibility analysis

We mapped several metrics of environmental conditions that char-
acterize the visual quality of exurban viewscapes in the intermountain
West: the visual scale, complexity, and naturalness of an area seen from
a particular vantage point (Vukomanovic & Orr, 2014). We used visi-
bility “line-of-sight” analysis (Fig. 1) to measure the size (visual scale)
of each exurban viewscape, based on both BE and ToC models at
multiple resolutions (1 m, 5m, 10 m, 15 m, and 30 m). We limited the
maximum visibility distance to 10 km in all directions and set the local
observer height to 3 m above the surface to simulate a typical viewpoint
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from a house. Our analysis used a computationally efficient line-
sweeping algorithm implemented in GRASS GIS (Haverkort,
Toma, & Zhuang, 2009). We computed multiple separate processes in
parallel to calculate viewscapes from 5-m resolution data and coarser.
Computation of 1-m resolution viewscapes (input raster size of 400
million cells) required 38 GB of memory necessitating an alternative
parallelization approach. We split the square area centered on the ob-
server point into four square tiles with one cell-width overlap and
processed these tiles in parallel. This approach produces identical re-
sults on the overlap of any two tiles and we then directly merged the
resulting viewscape quadrants into a seamless viewscape. This ap-
proach sped up the computation of the 1-m resolution viewscapes by
roughly four times. Finally, we vectorized each viewscape’s geo-
graphical boundary resulting in 10,000 multipart polygons (1000 re-
sidences using BE and ToC data at 5 resolutions).

For each of the 10,000 viewscapes, we measured privacy in terms of
the number of visible neighbors and distance to closest visible neighbor.
We quantified complexity as the mean terrain ruggedness (TRI) and
naturalness as the mean normalized difference vegetation index (NDVI)
value within each viewscape. For diversity, we measured the number of
different vegetation types present in each viewscape. The TRI measures
the sum change in elevation between a cell and the mean of its 8-cell
neighborhood and provides a quantitative metric for assessing terrain
heterogeneity (Riley, DeGloria, & Elliot, 1999). TRI values for the study
area ranged from 0 (“level”) to 1027 (“extremely rugged”). We calcu-
lated the naturalness (greenness) of each viewscape based on two
merged NDVI Landsat products acquired during leaf-on tree phenology
conditions during July and September of 2014. To fill holes caused by
clouds and cloud shadows, we combined the two NDVI products and
selected the maximum value. At the pixel-level, the NDVI band re-
presents the higher NDVI values (pixel max), and for each viewscape we
computed the average of the pixel max. We obtained mapped vegeta-
tion data from the LANDFIRE Existing Vegetation Type (LANDFIRE,
2014) database, which included multiple types of forest, grassland,
shrubland, riparian, bare earth, and development.

2.5. Statistical analysis

We used two-sample F-tests and t-tests to determine whether
viewscapes derived from high-resolution 1-m BE models (N = 1000)
and ToC models (N = 1000) differ significantly in area, privacy
(number of visible neighbors and distance to nearest visible neighbor)
and visual quality (TRI, NDVI, vegetation diversity). We ran Student’s
and Welch’s t-tests to compare differences in means. For each model
type (BE, ToC), we also used one-way analysis of variance (ANOVA) to
assess differences in viewscape area across the five resolutions of LiDAR
data aggregation (1, 5, 10, 15, and 30-m). We analyzed all possible
pairwise combinations of resolution differences (i.e. 1m-5m,
1m-10m, 1 m-15m, 1 m-30 m, 5 m-10 m, etc.) using Tukey’s honest
significant difference (HSD) tests within each model type. For each
resolution, we developed an OLS regression model of the relationship
between BE and ToC viewscape areas in order to quantify over-
estimation bias in BE models and determine if relationships change
with scale. All analyses were performed in R (R Core Team, 2013) using
an alpha of 0.05, or 95% confidence interval.

3. Results

High-resolution bare-earth (BE) models produced significantly
larger exurban viewscapes (4.6 times on average) compared to top-of-
canopy (ToC) models (Table 1; Figs. 3 and 4). Privacy of exurban homes
also differed significantly between BE and ToC viewscapes; residents
could see almost three times more neighbors in BE viewscapes com-
pared to ToC and the nearest visible neighbor in BE viewscapes was
over 100 m closer on average (Table 1; Fig. 5). BE viewscapes were
significantly greener (higher NDVI), with a greater diversity of
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Table 1

Comparison of area and visual quality metrics for 1-m BE and ToC models.

Landscape and Urban Planning 170 (2018) 169-176

Metric Model Mean Std. Deviation F-test t-test
on (SD) ® sig. ® df sig.

Viewscape Area (km?) BE 7.93 12.17 12.5 T 15.47 1158 T
ToC 1.74 3.45

Number of Visible Neighbors BE 18.5 15.9 4.72 T 20.8 1404 ¥
ToC 6.9 7.36

Distance (m) to Nearest Visible Neighbor BE 228.5 423.8 0.42 T —4.75 1712 T
ToC 345.6 654.3

Terrain Ruggedness Index (TRI) BE 2.47 1.36 0.04 T -61.7 1078 T
ToC 12.26 11.3

Greenness (NDVI) BE 0.600 0.148 0.65 T 3.85 1911 T
ToC 0.583 0.144

Number of Vegetation Types BE 7.2 1.30 0.9 0.11 6.89 1998 T
ToC 6.8 1.37

¥ =p < 0.0001.
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Fig. 3. Viewscape perspectives from three exurban
residences demonstrate differences in 1-m BE and
ToC  representations  between  (A) small
(BE = 2.1km% ToC = 0.6km?, (B) medium
(BE = 8km?% ToC =1.5km?, and (C) large
(BE = 21.1 km%; ToC = 3.3 km?) viewscapes.

Fig. 4. Viewscape area and data volume as a function of model type and
data resolution.
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vegetation types compared to ToC viewscapes (Table 1; Fig. 5). ToC
viewscapes were significantly more “rugged” with average TRI values
over four times greater than BE viewscapes (Table 1).

Viewscape area varied significantly across the five data resolutions

Landscape and Urban Planning 170 (2018) 169-176

Fig. 5. Visual quality metrics of the exurban landscape seen
from a single residence (A-D) and from multiple residences
(E-H). The number of visible neighbors (A and E), mean
terrain ruggedness (B and F), mean NDVI (C and G) and
number of visible vegetation types (D and H) depend on the
size and configuration of each viewscape. Purple polygons
delineate the single residence’s viewscape (A-D).
Proportional circles represent the numbers of visible
neighbors (E) and visible vegetation types (H) of multiple
residences’ viewscapes. Graduated colors show mean ter-
rain ruggedness (F) and mean NDVI (G) of those view-
scapes. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version
of this article.)

for both BE [F(4, 4995) = 4.89, p = 0.0006] and ToC [F(4, 4995)
= 19.98, p = 0.0000] model types. For all resolutions, ToC models
produced significantly smaller viewscapes compared to BE (Fig. 4;
Fig. 6). Regression relationships between the area of BE and ToC
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Fig. 7. Regression relationship between ToC and BE viewscape areas based on 1-m re-
solution LiDAR data. Model fit decreases as resolution coarsens from 1-m to 30-m.

viewscapes revealed overestimate bias in the BE models and showed
that model fit decreases at coarser resolutions (e.g. 1-m r2 = 0.80 and
30-m r2 = 0.53; Fig. 7). Viewscape area also increased with coarser
resolution for both model types (Fig. 4), but not all resolutions within a
given model type produced significantly different viewscape areas
(Table 2). Pairwise comparisons showed that 1-m ToC viewscape area
differed significantly from all other resolutions (Table 2). Data volume
decreased exponentially with coarser resolution, with concomitant in-
creases in viewscape area (Fig. 4). For example, 5-m file size inputs to a
viewscape model are 96% smaller than 1-m inputs, but produce 12%
and 49% larger viewscapes on average using BE and ToC models,

Table 2
Comparison of viewscape area (km?) across resolutions within each model type.

Landscape and Urban Planning 170 (2018) 169-176

Fig. 6. Exurban viewscapes as a function of model
type and data resolution. The house symbol denotes
the house location for this single representation.

respectively.

4. Discussion

As viewscapes become more commonly used to improve under-
standing of how humans perceive the visual quality of landscapes, there
will be a heightened need for more realistic Top-of-Canopy (ToC)
models. For example, proximity to water bodies often attracts amenity
migrants to a particular location (McGranahan, 2008; Real,
Arce, & Sabucedo, 2000), but a lake that is ‘seen’ from a house in a BE
modeled viewscape may not be visible after accounting for the presence
of vertical features, such as trees and neighboring houses that can ob-
struct the view of the lake. This does not mean that the lake is not an
important amenity in the area; however, a trade-off may exist between
desirable features and those with which the homeowner has a visual
connection. In this example, it may be more important for the home-
owner to feel secluded and nestled within a grove of trees. Of course,
many factors will influence a single housing location decision — zoning,
the availability of lots for sale, home price, etc. However, by taking a
landscape perspective and considering hundreds or thousands of
homes, some of the trade-offs between amenity preferences may be-
come more clear. Other applications of viewscapes, such as planning
scenic views of paths or hiding unsightly land uses will similarly benefit
from improved modeling of vertical features and the use of ToC models.

Several consequences arise from our finding that BE models greatly
exaggerate the size of viewscapes, which significantly affect metrics of
viewscape visual quality. Greenness is an element of naturalness, a
common and widespread aesthetic preference that is known to enhance
landscape preference (Ode, Fry, Tveit, Messager, & Miller, 2009;
Purcell & Lamb, 1998; Vukomanovic & Orr, 2014). Greenness is also
positively associated with mental (van den Berg et al., 2016) and
physical (Tsai, Floyd, Leung, McHale, & Reich, 2016) health and ame-
nity migrants value natural areas that provide opportunities for rest and

Resolution Comparison 1m-5m 1m-10m 1m-15m 1m-30m 5m-10m 5m-15m 5m-30m 10 m-15m 10 m-30 m 15m-30m
BE Difference of Means 0.95 1.43 1.83 2.71 —0.48 —-0.88 -1.76 0.41 1.29 0.88
Adjusted p-value 0.58 0.18 0.04 0.00 0.95 0.65 0.05 0.97 0.27 0.65
ToC Difference of Means 0.86 1.29 1.45 1.70 -0.43 —0.58 -0.84 0.16 0.41 0.25
Adjusted p-value 0.00 0.00 0.00 0.00 0.25 0.04 0.00 0.95 0.29 0.75
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relaxation (Purcell, Peron, & Berto, 2001; van den Berg, Koole, & van
der Wulp, 2003). Terrain ruggedness contributes to viewscape com-
plexity, which describes the diversity and richness of landscape ele-
ments and features, and enhances landscape preference. More complex
terrains — those with more variation and greater complexity of patterns
and shapes — are generally considered more appealing (McGranahan,
2008; Stamps, 2004). Larger BE viewscapes are significantly greener
and have a greater number of vegetation types than the smaller ToC
viewscapes (Table 1). On the other hand, the presence of vertical nat-
ural and human features in ToC models resulted in viewscapes with
higher terrain ruggedness values (Table 1). Naturalness and complexity
are important visual quality metrics, and the study of preferences re-
lated to these metric should reflect both a more realistic viewscape size
as well as the vertical structure of landscape features. Decades of scenic
analysis studies have led to a number of detailed assessment metrics
and models with well-established visual preference theory and con-
ceptual models. Examples include evaluating scenic beauty (Arthur,
Daniel, & Boster, 1977), managing natural landscapes for scenic pre-
ferences (Shafer & Brush, 1977), and mathematical modeling of mul-
tiple landscape parameters using synthetic data (e.g. Guldmann, 1980).
To date, these studies have relied mainly on data collection from pho-
tographs and/or required field access for direct measurement, but their
conceptual underpinnings are important for grounding the develop-
ment of new analytics. Advances in spatial computing and fine-grain
spatial data, such as LiDAR, present an exciting new frontier to apply
mathematical and conceptual models of visual quality to large areas
(100 s to 1000 s km?).

Privacy is an important driver of exurban development, particularly
in the intermountain West where the frontier idyll still looms large
(Hines, 2007; Kondo, Rivera, & Rullman, 2012). The visibility of
neighbors not only impacts perceptions of privacy, but also other re-
lated visual quality metrics, such as naturalness or intactness (Real
et al., 2000). Our results indicate that vertical dimensions of the built
and natural environment are important for assessing the privacy of
locations. Our case study of exurban homes shows that almost three
times more neighbors are visible in BE viewscapes compared to those
derived from ToC models. In this landscape, forest vegetation ob-
structed the visibility of neighboring homes more than human-made
structures, but in other areas with higher density development, the
reverse might be true. Not only were more neighboring homes visible in
BE viewscapes, but the nearest visible neighbors are significantly closer.
These differences between models could lead to dramatically different
interpretations in viewscape studies. For example, there are many
nearby visible neighbors in the BE visualization, which might suggest
that residents are seeking to live close to neighbors and to maximize
social interaction. However, ToC models are better representations of
how vegetation creates privacy and seclusion. Although many neigh-
bors may be nearby, only a third are visible in this case, and those that
are visible are typically further away. Forested mountain regions pro-
vide a range of privacy contexts to consider. Homes may be scattered in
low-density exurban patterns, but in some cases, clustering of homes is
necessary due to limited road access, localized potable water for wells,
or wildfire hazard concerns. In contrast, grassland systems where
landowners can — and do - construct their own roads and/or large
aquifers allow for wells to be established, may not necessitate clustering
(e.g. Vukomanovic, Doumas, Osterkamp, & Orr, 2013). The addition of
an economic perspective could help further our understanding of visual
quality preferences and clarify whether differences between ToC and BE
model representations better explain differences in real estate value.
Hedonic price analyses, for example, could reveal the roles that view-
scape size and visual quality characteristics play in determining housing
markets.

The degree to which relationships are generalizable across scales of
observation (i.e. scale invariance) has never been examined in view-
scape modeling studies. Our finding that the area of viewscapes in-
creases with coarser data resolution (Fig. 4) suggests that LiDAR line-of-

175

Landscape and Urban Planning 170 (2018) 169-176

sight models are resolution dependent and subsequent measurements of
visual quality may not be generalizable across scales. However, we
found that differences between the areas of BE and ToC viewscapes
from the same vantage point are fairly consistent across resolutions in
that BE viewscapes are approximately four times larger than ToC
viewscapes. This suggests that the error in BE viewscapes could be
approximated in this setting. For example, our regression models, or
even a simple “4 X correction coefficient”, could be useful in situations
where LiDAR data are not available. The strong relationship between
ToC and BE viewscapes at fine scales (1-m r2 = 0.80) suggests that
modelers can be more confident of using such a correction for fine-scale
BE surfaces, but should be cautious at coarser resolutions with sub-
stantially weaker relationships (30-m r2 = 0.53; Fig. 7). We recognize
that these correction coefficients are calibrated based on viewscape
characteristics (e.g. terrain, vegetation, and housing density) of this
study system in Colorado and therefore may not be generalizable to
other regions. We encourage additional studies to test the scale in-
variance of viewscape relationships in new places.

We also encourage future work in regions with different forest types
(e.g. mixed evergreen/broadleaf forest and deciduous forest) and den-
sities of the built environment (e.g. urban and suburban areas) to assess
the broader generalizability of our Top-of-Canopy LiDAR approach. An
advantage of the ToC approach is its ability to represent viewscape
conditions of numerous sites. However, it may incompletely represent
viewscapes where horizontal visibility is important, such as in urban
settings (e.g. Yu et al., 2016). Future work that investigates if and
where the ToC approach is incomplete could inform innovative toolkits
for landscape design and visual quality assessments across a range of
landscape and urban settings.

To date, computational barriers and limited access to LiDAR data
over large extents have contributed to the prominence of traditional
bare-earth viewscape models. LiDAR data collection is costly and cov-
erage has typically included only specific areas of interest. In many
cases, LIDAR data are proprietary. Additionally, unique expertise is
often required due to the data- and computationally-intensive nature of
LiDAR analyses (Singh, Chen, Vogler, & Meentemeyer, 2016), which
may pose an obstacle for many studies. Our findings that ToC view-
scapes produce significantly smaller viewscapes with more realistic
visual quality compared to BE viewscapes suggest that LiDAR-derived
ToC viewscapes can be a better option for many landscape and urban
planning studies. In cases where it is not feasible to use ToC models, our
results suggest that 1-, 5-, and 10-m BE models can be used inter-
changeably since area measurements between these resolutions were
not significantly different (Fig. 4). While data volumes and computa-
tional costs of LiDAR decrease exponentially with coarser resolution,
model error significantly increases; we therefore recommend modeling
viewscapes using fine-scale 1-m ToC LiDAR data.

Digitally modeled viewscapes are being increasingly used in land-
scape and urban planning, but with little attention to the important
roles that data representation and the vertical dimension of built and
natural environments play in their measurement. We found significant
differences in the size of viewscapes derived from LiDAR bare-earth
(BE) and top-of-canopy (ToC) models, which in turn influenced our
measurements of visual quality. Viewscapes computed using BE models
were significantly larger than those computed with ToC models - a
pattern that was consistent across multiple resolutions of LiDAR data
aggregation. Vegetation and human-made features obstruct visibility in
the real world, and when models incorporate these features, they too
produce smaller viewscapes that more realistically reflect the visible
portions of the landscape. Our findings suggest that the vertical and
horizontal dimensions of viewscapes should be considered across the
range of domains that are informed by the visual connections that
humans form with their environment.
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