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Abstract Rapid urbanization coupled with concerns about global climate change has
renewed interest in energy conservation and carbon dioxide emissions reduction. Urban
residential energy consumption is a valuable place to start reducing emissions, and urban
tree planting programs have been both proposed and utilized as an energy conservation
mechanism. Home energy savings associated with urban trees are often quantified using
models because of the many complex interactions among variables that can influence home
energy use. However, recent empirical analyses have found that energy savings associated
with trees may be minimal relative to other important factors like building characteristics and
human behaviors. We surveyed 176 residents from four neighborhoods in Raleigh, NC with
varying socio-economic characteristics to assess relationships between summer energy
usage, tree cover, homeowner behavior, and building characteristics. As hypothesized, we
found that building characteristics, demographics, and human behaviors were all significant
variables in describing the variability in summertime home energy usage. Although, total
percent tree cover 18 m around the home did not affect summertime energy use, the number
of trees in the NE and NW quadrants around each household did predict home energy use.
These results indicate that planting trees may not be a successful strategy for reducing
energy use from the residential sector in the heavily forested Southeast; rather efforts should
target conservation and efficiency.
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Introduction

Scientists, policy makers, and resource managers worldwide are searching for ways to
reduce the anthropogenic greenhouse gas emissions responsible for global climate change
(Betsill 2001; Bosch and Metz 2011). Enhancing ecosystem level carbon sequestration is
debated as a potentially viable solution, along with increasing the use of renewable fuels, but
it is hard to deny that one of the only guaranteed methods for attaining lower levels of
greenhouse gas emissions is to directly reduce these emissions instead of searching for
offsets (Bosch and Metz 2011; McGuire et al. 2001; Pataki et al. 2009; Schimel et al. 2001).
The energy sector in particular is a constructive place to implement CO2 reduction strategies,
since 81 % of greenhouse gas emissions in the U.S. are carbon dioxide (CO2) from burning
of fossil fuels for energy use (EIA 2008).

Within the energy sector residential energy use is projected to increase considerably,
therefore, understanding the drivers of home energy consumption should be a priority for
research targeting potential energy reductions (Aune 2007). Individuals have direct control
over their own home energy demands and are responsible for 21 % of total energy related
emissions (EIA 2008; EIA 2005a, b). These emissions in the U.S. are primarily a function of
residential space heating and cooling. In particular, urban dwellers are accountable for a
majority of residential electricity use and much of this use can be attributed to summer air
conditioning (EIA 2005a, b).

The urban heat island effect mitigates home energy use, and may have environmental
justice implications. Urban areas can experience elevated temperatures, sometimes as much
as 10 °F higher than surrounding areas, and this phenomenon exacerbates home cooling
costs (Akbari et al. 1992; Santamouris et al. 2001; Souza et al. 2009). This issue is of
concern to energy companies, especially when they cannot meet peak energy demands
(Baxter and Calandri 1992). As future energy crises loom, it is important to understand
how people live and use energy resources, as well as what are comfortable levels of resource
use (Higgins and Lutzenhiser 1995). Although present policy focuses on reducing energy
demands through increasing energy prices, there is little evidence that these economic
considerations are actually important to homeowners, yet people’s lifestyle choices associ-
ated with their conceptualization of a home play an important role in energy consumption
(Aune 2007).

This further becomes an environmental justice issue as the highest vulnerability to the
stresses imposed by the urban heat island effect may hit the least economically secure urban
dwellers. Studies have shown that areas with the highest density of people and the least
amount of vegetation tend to also experience extremes in temperature that fall outside of the
human comfort zone and can be harmful to human health (Harlan et al. 2006). More
importantly, these conditions are often associated with neighborhoods dominated by lower
socio-economic status andminority groups (Harlan et al. 2006; Huang et al. 2011; Tomlinson et
al 2011).

Trees can mitigate these impacts directly by sequestering CO2 and indirectly by decreas-
ing energy used for heating and cooling via modifying the microclimate, shading buildings,
and blocking winter winds (Akbari 2002; Donovan and Butry 2009; Heisler 1986; McPherson
and Rowntree 1993; Simpson 2002). Collectively, citywide vegetation can create an overall
cooling effect for neighborhoods and cities (Akbari et al. 1992; McPherson 1992; McPherson et
al. 1988; Meier 1991; Simpson and McPherson 1998). Model simulations have demonstrated
tree induced reductions in cooling can range from 10–80 % depending on the climate and
amount of coverage (Huang et al. 1987; McPherson and Rowntree 1993; Pandit and Laband
2010). For example, on a per tree basis, savings have ranged from 10–15 % for twelve cities
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throughout the U.S., but increase with more coverage (McPherson 1994; Pandit and Laband
2010). For these reasons, trees have been considered to be one method for helping achieve
urban CO2 reduction targets.

Special emphasis on how residents can manage and maintain trees for the provisioning of
ecosystem services has implied, yet controversial, value in increasing the quality of life in
lower socio-economic status and minority neighborhoods. Setting aside the fact that the
mechanisms behind the relationship between tree cover and socio-economic status are not
yet clearly understood, empirical evidence for the production of ecosystem services by trees
remains uncertain (Grove et al. 2006b; McPherson 1992). Understanding how trees influ-
ence home energy use is particularly complex, because of the number of variables that can
have an effect on the cooling demand associated with individual homes.

Studies on residential home energy use have shown human lifestyle choices, occupant
behavior, building attributes, appliance use, and characteristics of the heating and cooling
systems all play a role in energy consumption (Bin and Dowlatabadi 2005; Laverne and
Lewis 1996; Pandit and Laband 2010; Schipper 1996; Schipper et al. 1989; Simpson 2002).
These empirical analyses predict that energy savings from trees may be smaller than those
associated with energy efficient building characteristics (e.g., insulation, window character-
istics, home size). In another study, Abbott and Meentemeyer (2005) sampled modern
homes and found trees had a minimal impact on energy used for summer cooling, while
thermostat settings were crucial drivers of energy use.

Although empirical analyses on the impacts of vegetation relative to other variables
influencing home energy use are rare, research to date indicates trees may have smaller
impacts on energy consumption than some models have predicted (Abbott and Meentemeyer
2005; Laverne and Lewis 1996). Furthermore, occupant behaviors (e.g., thermostat settings,
amount of time home is occupied, appliance use) create considerable variation in model
estimates of energy savings from trees (McPherson and Rowntree 1993). Because the CO2

mitigating services attributed to tree planting projects have been derived from estimates of
energy savings (McHale et al. 2007; McPherson 1994), we need more empirical estimates of
tree impacts on home energy use.

We began addressing this need to better understand the direct effects of urban trees on
energy use in Raleigh, NC, by evaluating the relationships among human lifestyle choices,
tree cover, building characteristics, and household energy consumption with focus on
summertime energy use. We aimed to conduct an in-depth empirical analysis on energy
consumption to examine the complex and interacting variables that influence residential
energy consumption. Raleigh continues to be a rapidly expanding urban center, despite the
economic crisis, and has a sprawling pattern of development similar to that of younger U.S.
cities (Ewing et al. 2009). More importantly, NC’s capitol city is located in the southern
growth zone where tree related impacts on energy usage are predicted to be among the
highest due to elevated tree growth rates, high tree cover, and potentially rising summertime
temperatures (McHale et al. 2007).

Our goal was to identify the drivers of summertime home energy consumption and the
relative influence of trees in providing key ecosystem services associated with energy use
reductions. We hypothesized that the most important variables influencing home energy use
would be home size and home age, as well as, categorical indicators of lifestyle choices as
defined by recent marketing analyses (The Nielsen Company PRIZM ©). Although we did
not expect tree cover to be one of the most important variables influencing home energy use,
we did expect that total percent tree cover 18 m around the home would have an effect on
summertime home energy consumption. Specifically, we hypothesized that with increasing
tree cover there would be a greater reduction in energy use. We also expected that
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environmental worldview might play a role in explaining some of the variation around home
energy use. We hypothesized that groups with more pro-environmental beliefs would use
less energy per month due to conservation and/or efficiency. Our results have important
implications for understanding relationships among tree cover, energy use, and lifestyle
choices, and in turn managing residential home energy use for reducing CO2 emissions in
the U.S.

Methodology

Study site

We conducted our study in Raleigh, North Carolina located at 35° 46′ 18″ N latitude and 78°
38′ 20″ W, which is in the Piedmont region and corresponds with USDA Hardiness Zone 7
(USDA-USNA 2011). This region experiences hot humid summers and mild winters, thus
allowing numerous tree species to thrive (McPherson et al. 2006). Average summer daytime
temperatures are in the upper 80s to low 90s °F (26.7 to 32 °C) and nighttime temperatures
are in the upper 60s (15.6 °C) with an average annual precipitation of 43 inches (NOAA
2011). These climatic conditions result in a large amount of home energy use for air
conditioning (Pandit and Laband 2010; Rudie and Dewers 1984).

Raleigh, NC is an expanding urban center and was the second fastest growing major
metro area in the U.S. in the 2000s, despite the nationwide economic crisis (Kotkin 2010;
Raleigh Demographics 2011; US Census Bureau 2010). Raleigh’s population in April 2010
was 403,892 persons, an increase in about 15,000 people since 2009 (Raleigh Demographics
2011; Raleigh Department of City Planning 2010). Raleigh is representative of many
forested Southeast cities, as many of these urban centers are experiencing rapid growth
(USDA Forest Service 2011). Within Raleigh, housing units range from older than 200 years
to recently constructed homes. The tree cover for the entire city is high, with estimates
ranging from 31 % to 55 % (Bigsby et al. in prep 2011; Clayton et al. 2008), and the mix of
neighborhoods provided us with the range of tree coverage conditions needed for this study.

Neighborhood selection

We chose neighborhoods that represented a range in socio-economic status, and accounted
for both economic diversity and lifestyle group. Lifestyle categories were determined by the
Potential Rating Index for Zipcode Markets (PRIZM). In the PRIZM classification system,
urban, suburban and rural neighborhoods in the U.S. have been separated into clusters using
census data. Additional data, such as point-of-purchase receipts, public opinion polls, and
market research surveys, were then used to further categorize neighborhoods into three
levels of aggregation: 5, 15, and 62 categories. PRIZM used six primary factors to explain
neighborhood variance: social rank, household (e.g., life stage, size), mobility, ethnicity,
urbanization, and housing (e.g., owner vs. renter, home values). The five-group categoriza-
tion was based on urbanization; moving to 15 groups added socio-economic status, and the
62 levels disaggregated socio-economic status into a lifestyle categorization with informa-
tion, such as household makeup, mobility, ethnicity, and housing characteristics (Claritas
2007, 2008; Grove et al. 2006a, b).

After we chose six lifestyle groups based on lifestyle categories, we looked at overall tree
cover for 12 neighborhoods in Raleigh to see which groups had equal percent cover for the
entire neighborhood and a large range in individual residential cover. For each of the 12
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neighborhoods, we calculated percent tree cover using a dot-grid method in ArcGIS with
2008 leaf-on conditions (Nowak et al. 1996). We found percent tree canopy cover for the
entire residential area in the PRIZM boundary, average residential percent cover per group
using a sample of 30 residences, and the range in tree cover for the 12 neighborhoods.

We chose four neighborhoods based on economic diversity (2 high and 2 low income
groups), sample size (at least 200 homes in the group), low residential zoning, prevalence of
single-family conventional homes, large range of home ages, dominant race/ethnicity, at least
50 % tree canopy cover for the entire group, and a large range in percent canopy cover for
individual residences (Table 1). The four PRIZM segments we sampled were: 12 “Brite-Lites,”
“Lil-City,” 24 “Up-and-Comers,” 47 “City Startups,” and 60 “Park Bench Seniors.” According
to PRIZM segment descriptions, Groups 12 and 24 represent high socio-economic status
groups, and Groups 47 and 60 represent low socio-economic status groups (Claritas 2008).

Data collection

We implemented a stratified random sample to ensure that we had various levels of tree
cover represented in each neighborhood. A total of 176 residences were sampled with 44
residences per group and four levels of tree cover. The levels of tree cover were 0–25, 25–50,
50–75, and 75–100 %. There were 11 residences in each cover category per PRIZM group.
Tree cover class was initially determined in the field by estimating the cover for trees that
were taller than 6 m and within 18 m of the home. After the home was sampled, we
calculated actual percent cover using the aforementioned dot-grid method.

We administered a door-to-door questionnaire from May to September 2010.
Residents did not receive advance notification of the study and completed the
questionnaire on site. To generate random addresses within the four neighborhoods,
we used Hawth’s Analysis Tools for ArcGIS, allowing for each address to have an
equal chance for selection (Beyer 2004). Residences meeting the percent cover criteria
were visited until a response was received or up to four visits (including an evening
and weekend visit). After the fourth attempt we used the nearest proximate address,
until the sample size was met. The sample size was sufficient to reflect a wide range
of shade conditions, as well account for the other variables in Table 1.

Questionnaire and residence data

We asked a series of 20 questions on home energy use, building characteristics, air
conditioner type and efficiency, occupant(s) behaviors, environmental beliefs, and basic
sociodemographics. Each questionnaire took 20 minutes to complete.

Monthly electricity usage

The surveywas administered during the summer of 2010, but we collected energy use data from
the two previous years for June, July, and August. If respondents had internet access and an
online account they could access their usage from 2008, 2009, and 2010. Alternatively, if they
did not have an online account, they called customer service to get usage from 2008 and 2009.
In some instances the resident did not live at their recent address in 2008 and therefore we could
not access energy information for those months. All of the households sampled provided data
for 2009, and 61 % of households included data for 2008. We calculated an average monthly
energy use in kilowatt-hours (kWh) for each residence as well as standardized monthly energy
use by home size (kWh/ sq. ft. / month) for comparison purposes.
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Building and air conditioner attributes

Each resident described the size of their home in square feet, the age of their home in years,
and listed any appliances that used natural gas. We collected information on the number of
air conditioning units, the type of unit(s) (central, window, wall, or other), and the age of the
unit(s).

After we began to synthesize our data, we realized the potential importance of
historic building characteristics in our study. One neighborhood in particular was
considered historic. In the 18th century, buildings were constructed to deal with
regional climate; in warm humid climates, porches, awnings, and high ceilings
reduced the impact of the sun. Elevated living floors, shutters, and large windows
helped to circulate air in the home (Park 1991). After questionnaires were adminis-
tered, we drove through each neighborhood and sampled 30 of the previously sampled
homes for the following traits: high ceilings (greater than 8 ft.), awnings, large front
porches (take up entire front porch), and shutters. Then, we calculated the percent of
homes in each neighborhood that had these characteristics, and the percent of homes
that had all of these characteristics.

Occupant behaviors

Residents indicated whether or not they programmed their air conditioners for a specific
temperature, and if so they described the temperatures for: Monday through Friday 9
am–5 pm, Monday through Friday nighttime, weekend 9 am–5 pm, and weekend
nighttime. These values were used to calculate a weighted inside temperature
(Appendix A). Also, they were asked whether they turned their thermostat to a warmer
temperature when the house was unoccupied and if someone was home more than 18 h a
day during the summer. Lastly, we asked the surveyor to rate how comfortable he/she
was in the residence during the summer using a scale of 1–5, with 1 being ‘very
uncomfortable’ and 5 being ‘very comfortable.’

Environmental attitudes

Using an instrument called the New Ecological Paradigm (NEP) scale, we measured
people’s environmental attitudes. This 15 item scale has been widely used as an indicator
of pro-environmental attitudes. A high score on the scale represents a pro-ecological
orientation, and should lead to pro-environmental beliefs and attitudes (Dunlap et al. 2000).

In addition, we asked the respondent to rate (1) how important it is for him/her to reduce
energy usage in their home using a scale of 1–5, with 1 being ‘not important at all’ and 5
being ‘very important’; (2) how likely he/she would be to make energy efficiency improve-
ments to his/her home if they knew it would lower their energy bill using a scale of 1–5, with
1 being ‘very unlikely’ and 5 being ‘very likely.’

Sociodemographics

We asked questions regarding gender, race/ethnicity, age, education level, household in-
come, and number of people living in the residence. Other energy studies that documented
lifestyles, behaviors, and demographics have found some of the above variables to be
influential (Druckman and Jackson 2008; Schipper 1996; Schipper et al. 1989; Souza et
al. 2009; Wei et al. 2007).
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Tree cover and weather data

Initially in the field, we estimated tree cover and grouped each residential unit into one of the
four tree cover categories: 0–25, 25–50, 50–75, or 75–100 %. Also, the number of trees
taller than 6 m and within 18 m of the home was documented for each quadrant (northwest,
northeast, southwest, southeast). After we implemented the questionnaire at each home, we
measured the actual percent cover using the dot-grid method (Nowak et al. 1996) for all trees
within 18 m of the home to confirm the initial classification. We measured trees
within 18 m of the home due to previous findings that trees beyond that range do not
affect energy use directly through shading (Donovan and Butry 2009; McHale et al.
2007; McPherson et al. 1988).

We obtained weather information from NOAA for 2008 and 2009 summer seasons,
and assumed weather conditions for Raleigh were representative of our neighborhoods
in central Raleigh. The station was located on Centennial Campus of North Carolina
State University, and was in the center of the sampled neighborhoods. The tempera-
ture outside individual homes may have had discrepancies due to microclimate effects,
but we were unable to control for this high heterogeneity in our sampling design.
However, our sample design was meant to account for this issue in that the neighbor-
hoods sampled had similar overall tree cover, and we targeted homes with varying
levels of tree cover in each group.

We documented the monthly maximum, minimum, and average temperatures for June,
July, and August. This information was later used to calculate an average monthly temper-
ature differential for each summer, which was the difference between outside and inside
temperature (Appendix A).

Data analysis

Model and analysis

We used SAS 9.2 (SAS ®9.2 Software) for all analysis. Before analyzing the data, some
variables were collapsed based on sample size (Appendix A). For the ANOVA and regres-
sion analyses, the following assumptions were met: (1) the observations were independent;
(2) the errors were normally distributed; (3) all groups had equal response variances; (4) no
variables expressed collinearity.

Equation 1 was representative of the two-way ANOVA model (α00.05) for analyzing the
means for standardized energy usage, NEP score, and inside temperature for the effect of
PRIZM and percent cover. The parameters P corresponded to the effects of the four PRIZM
groups; the parameters C corresponded to the effects of the four levels of percent cover with
a nested PRIZM parameter. Tukey’s LS means test was conducted for energy usage and NEP
score to determine which groups were significantly different from each other.

Yijk ¼ μþ Pi þ C Pð Þij þ eijk; ð1Þ

for i012, 24, 47, 60, j01,2,3,4, and k01
where, Y 0 energy use per square foot, NEP score, or inside temperature

We regressed monthly energy usage (Υi) against all variables with the iterative stepwise
method using Mallows’ Cp for model selection. Mallow’s Cp was used to guard against the
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issue of over-fitting a model with the most possible variables. This model uses criteria that
address issues of sample size and potential collinearity (Mallows 2000). This was done for
total monthly energy consumption and monthly energy consumption standardized to the
square footage of the home.

Results

We modeled total energy and standardized energy use per month. There was a large amount
of variation among the explanatory variables for the 176 homes in the sample (Tables 2, 3
and 4). Mean energy usage across the entire sample was 1522 kWh/month and 0.89 kWh/sq.
ft. /month (Table 4).

Total energy use

Our general model to estimate total monthly energy use (kWh) per residence during the
summer season with α00.10 is represented by Eq. 2.

Yi ¼ 761:1630þ 0:0019a þ 0:3709 g � 5:8218 d þ 28:9042 η� 52:9746 θ

þ 60:2393k þ 207:2473 lþ 515:6439 n þ 268:6094 ρ� 222:6203σ

� 196:2911 t þ "i ð2Þ

where,

α household income in 2009 before taxes
γ square footage of residence
δ age of home in years
η differential for cooling in summer of 2009
θ number of trees in NW quadrant that were taller than 6 m and within 18 m of home
κ number of trees in NE quadrant that were taller than 6 m and within 18 m of home
λ number of air conditioning unit(s)
ν type of air conditioning unit, (0) other-window, wall, or combination (1) central only
ρ whether someone is home more than 18 h/day
σ indoor comfort level in the summer, (0) uncomfortable or neutral (1) comfortable
τ education level of survey taker, (1) no high school, high school, or vocational (2) some

college or associates degree (3) bachelors (4) masters, doctoral, or professional
φ weighted mean inside temperature during summer
ω race of person taking survey, (1) white (2) black or other
i sample households (i01 to 176)
ε normally distributed error term

Stepwise regression (α00.10) results showed that building size had the largest effect on
total monthly home energy use (R2037.7 %) (Table 5). Although the PRIZM lifestyle
category was not significant in our model, other demographic variables, including income
(R204.9 %) and education level (R204.5 %) were significant. Also, air conditioning
characteristics played a more important role than we expected.

Specifically, for every 100 square feet (9.29 m2) above the mean home size, energy
use per month increased 37.1 kWh (2.4 %) (Table 5). While temperature differential (the
difference between thermostat setting and outside temperature) and home age were both
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significant in the model, they had minimal effects on energy use. Each degree of
difference between mean outside temperature and homeowner’s mean thermostat tem-
perature raised electricity use by 28.9 kWh/month (1.9 %), while energy use decreased
by 5.8 kWh (0.4 %) for every additional year of the home above the mean age of
59.5 years.

Demographics also influenced the energy used in the home. Income was positively
related with energy use; each $10,000 increase in yearly income raised energy use by
20 kWh/month (1.3 %). Also, for each unit increase in education level, energy use decreased
by 196 kWh/month (13 %). When the home was occupied more than 18 h a day, energy use
increased by 269 kWh/month (18 %). Furthermore, those that reported being comfortable
indoors during the summer used 223 kWh/month (15 %) less energy than those that reported
being uncomfortable.

Table 3 Summary statistics for
categorical variables by utility or
structural types across all samples

aWindow, wall, or combination
of window, wall, and central
units
bHome occupied by someone
more than 18 h/day
cIndoor comfort level during the
summer

Variables Utility/structural type # of sample
households

Air conditioner Central 154

Othera 22

Gas appliances (any) Yes 143

No 33

Home 18 hb Yes 86

No 90

Comfort levelc Comfortable 131

Uncomfortable 45

Race White 124

Black/Other 52

Education High school 32

Associates degree 31

Bachelors 56

Masters or higher 57

Table 2 Summary statistics for
time-invariant attributes across all
samples

aYearly household income be-
fore taxes for 2009
bNumber of trees in each quad-
rant taller than 6 m and within
18 m of the home
cActual percent cover for all
trees within 18 m of the home
for all homes sampled

Attributes Mean Std. Dev. Min. Max.

Home size (ft2) 1921.61 1099.64 500 8011

Age of home (yr) 59.52 27.70 1 102

Age of ac unit (yr) 9 6.21 .42 30

# air conditioners 1.44 0.68 1 4

NEP score 55.24 9.23 23 74

Household incomea $107,919 $111,644 $7,500 $337,500

# trees NWb 2.46 2.31 0 12

# trees NEb 2.47 2.62 0 20

# trees SWb 2.45 2.20 0 11

# trees SEb 2.38 2.38 0 15

% cover 18mc 52.94 23.06 12 96
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Standardized energy use

Equation 3 represents the model we used to estimate monthly energy use (kWh) standard-
ized by home size (residence size in square feet) (α00.10).

Yi ¼ 2:6480� 0:0238ϕ� 0:0002 g � 0:0025 d � 0:0309 θþ 0:1470 lþ 0:4168 n

þ 0:1570 ρ� 0:1378σþ 0:1529w � 0:0653 t þ " ð3Þ

where, variables are in the same list as Eq. 2.

Table 5 Stepwise regression
results for total monthly energy use
in order of increasing R-square
value (α00.10). Dependent vari-
able 0 kWh/month. This model
explains 57.92 % of the total vari-
ation. Percent tree cover within
18 m of the home was not
significant in the model

aS.E. 0 Standard Error
bTrees taller than 6 m and within
18 m of the home

Explanatory variables Coefficient S.E.a R-square p-value

Intercept 761.163 301.083 – 0.0124

Home size 0.371 0.068 0.3771 <.0001

Education level −196.291 58.325 0.4224 0.0003

Income 0.002 0.0007 0.4713 <0.0001

Home age −5.822 1.860 0.5001 0.0020

Differential 2009 28.904 11.687 0.5185 0.0116

Home 18+ hours 268.609 108.856 0.5312 0.0340

Comfort level −222.620 116.527 0.5392 0.0907

Number trees NEb 60.239 22.471 0.5490 0.0585

Number trees NWb −52.975 26.399 0.5593 0.0505

Type AC unit 515.644 190.251 0.5691 0.0545

Number AC units 207.247 104.031 0.5792 0.0480

Percent cover 18 m – – – >0.1500

Model R-square 0.5792

Table 4 Summary statistics for time-variant attributes across all samples

Attributes Mean Std. Dev. Min. Max.

Mean kWh/month/sq. ft.a 0.89 0.48 0.10 2.79

Mean kWh/month 1522 984.25 257 7959

Mean inside temp. °Fb 76.13 4.49 65 95/off

Mean outside temp. 2008c 79.40 – – –

Mean outside temp. 2009c 79.37 – – –

Mean differential 2008d 3.68 3.11 0 14.35

Mean differential 2009d 1.55 2.28 0 11.10

a Calculated using kWh from June, July, and August of 2008 and 2009 and standardized to size of home
bWeighted average temperature based on thermostat settings—See Appendix A
c Average monthly value for that summer–Calculated using monthly maximum and minimum outside temper-
atures as reported by NOAA
dAverage differential per month–See Appendix A for more detailed calculations
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We modeled standardized energy use using α00.10 (Table 6), and the model was
similar to that produced for total energy use, except the income and temperature
differential were no longer significant, and thermostat setting and race were signifi-
cant. The variables that explained the highest amount of variability in the data were:
education level, home size, inside temperature, number of air conditioners, type of air
conditioner, and home age. For every degree increase in thermostat setting above
76 °F, but below 95 °F, 0.024 kWh/sq. ft. /month (2.7 %) less energy was used. In
relation to demographics, predominately white households used 0.153 kWh/month
(17 %) less energy per square foot than those dominated by blacks and other minority
groups.

Tree cover and energy use

Total percent tree cover around the home did not significantly influence energy use
(Tables 5 and 6). The ANOVA and regression analyses for total monthly and standard-
ized energy use showed that total percent tree cover 18 m around the home was not an
explanatory variable of home energy use across the entire sample or within PRIZM
groups. However, the number of trees taller than 6 m and within 18 m of the home for
certain azimuth categories was significant in the total energy use model. The mean
number of trees in all quadrants (NE, NW, SE, SW) was 2.4 to 2.5 trees (Table 2), but
each additional tree in the NW quadrant decreased total energy use by 53 kWh/month
(3.5 %), while each additional tree in the NE quadrant increased total energy use by
60 kWh/month (3.9 %).

Socio-economic status, environmental attitudes, and energy use

Initially, we predicted that although the higher socio-economic status groups would use
the most energy per month, neighborhoods with different lifestyle categories (PRIZM
categories) would have significantly different environmental attitudes than one another

Table 6 Stepwise regression
results for standardized energy use
(energy use per square foot) in or-
der of increasing R-square value
(α00.10). Dependent variable 0
kWh/month/sq. ft. This model
explains 42.25 % of the total vari-
ation. Percent tree cover within
18 m of the home was not signifi-
cant in the model

aS.E. 0 Standard Error
bTrees taller than 6 m and within
18 m of the home

Explanatory variables Coefficient S.E.a R-square p-value

Intercept 2.648 0.585 – <0.0001

Education level −0.065 0.037 0.1608 <0.0001

Inside temperature −0.024 0.007 0.2162 0.0006

Home size −0.0002 0.00004 0.2843 <.0001

Type AC unit 0.417 0.106 0.3054 0.0238

Number AC units 0.147 0.058 0.3433 0.0020

Home age −0.003 0.001 0.3596 0.0400

Home 18+ hours 0.157 0.062 0.3741 0.0499

Race 0.153 0.090 0.3870 0.0624

Comfort level −0.138 0.067 0.4011 0.0500

Number trees NWb −0.031 0.015 0.4284 0.0834

Percent cover 18 m – – – >0.1500

Model R-square 0.4225
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(NEP scores), and the groups with higher NEP scores would use less energy. Contrary to
what we expected, the lowest socio-economic status group used the most energy per
square foot (Fig. 1). Also, mean energy use was statistically different between “Bright
Lights Li’l City” (Group 12) and “Park Bench Seniors” (Group 60) (p00.0002) and “Up
and Comers” (Group 24) and “Park Bench Seniors” (Group 60) (p<0.0001), even though
thermostat settings were not significantly different per PRIZM group. Although environ-
mental attitudes were not significantly different among most groups (Fig. 2), environ-
mental attitudes may be influencing energy use as hypothesized. We found that Group 24
had the highest NEP score (p<0.0001), and they used the least amount of energy per
square foot (Figs. 1 and 2).

Historic building characteristics

“Up-and-Comers” (Group 24) was a state designated historic neighborhood with historic
building qualities; 67 % of the homes had design features that improve comfort in warm
climates: high ceilings (67 %), awnings (93 %), and large front porches (93 %). The other
three groups were not state designated historic areas. For “Brite Lites Li’l City” (Group 12),
33 % of the homes had high ceilings, 47 % had awnings, and 3 % had large front porches.
“City Startups” (Group 47) had no high ceilings, no awnings, and no large front porches.
The last group, “Park Bench Seniors” (Group 60), had no high ceilings, 10 % with awnings,
and 7 % with large porches.

Discussion

Research suggests tree cover around homes has a small effect on energy use relative to
building characteristics, such as window area, insulation levels, and surface to volume ratios

Mean Energy Use by Lifestyle Group 

A

A  B 

B

B

Fig. 1 Standardized mean energy use (kWh/ sq. ft. /month) per lifestyle group. The lowest energy users were
Up-and-Comers (Group 24) and they were a high socio-economic status group. The highest energy users were
Park Bench Seniors (Group 60) and they were a low socio-economic status group. Levels not connected by the
same letters were significantly different
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(Abbott and Meentemeyer 2005; Laverne and Lewis 1996). As discovered in previous
studies, we found building attributes explained more variance in energy usage than tree
cover (Abbott and Meentemeyer 2005; Laverne and Lewis 1996). Building characteristics
associated with increased energy efficiency are typically associated with newer homes,
leading to the result that modern houses are more energy efficient (Simpson and McPherson
1998). For instance, in Ann Arbor, MI, and Atlanta, GA newer homes used significantly less
energy than older homes (Abbott and Meentemeyer 2005; Laverne ad Lewis 1996). How-
ever, in our analysis, we found the exact opposite; older homes used less energy per square
foot than the newer homes. We may have seen these results in our region because many older
homes have been retrofitted for increased energy efficiency. It could have also been due to
the fact that many of these older homes were designed for making homes more comfortable
in the hot southeastern U.S. before the widespread use of air conditioning.

To evaluate the likelihood of the latter hypothesis associated with building design, we
determined the presence or absence of large awnings, high ceilings, large porches, and
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Fig. 2 NEP score per lifestyle group. Up-and-Comers had the highest NEP score. Levels not connected by
the same letters were significantly different
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shutters in each of the four neighborhoods in the study. As suspected, homes older than the
median age were three times more likely to have large awnings and porches than newer
homes. This result is important because many models assume that trees will play a larger role
in reducing energy around older homes due to inefficiency. In much of the southern U.S.
where older homes were designed for use without air conditioners (e.g., large awnings, high
ceilings, large porches) this may be a faulty assumption. Southern cities with historic
districts, particularly those that experience revitalization, may also exhibit the negative
relationship between energy usage and home age.

In addition to building characteristics, occupant demographics and behaviors, turned out
to be an essential part of our model. Education level influenced both the total energy and
standardized energy used. This may be because those with higher education spent more of
their time and money on energy efficient modifications. In the total energy model, income
was a significant variable, however, in the standardized model race/ethnicity influenced
energy use. These results may indicate potential inequities in the distribution of housing
quality among different ethnic groups, with minorities living in homes that are less energy
efficient.

It is interesting to note that the individuals that reported being less comfortable in the
summer months also lived in houses that used more energy per square foot. Again this
relationship seems like it could be associated with the efficiency of the home or appliances
used. Although, we documented air conditioner type and age, we did not actually check on
the type of insulation in each home. Insulation is typically assumed to vary with home age
because it is very difficult to acquire accurate information about insulation type from
residents. Future studies that describe the relationship between insulation and comfort are
needed and would add value to these results.

Not surprisingly, when a person was home during the day, energy use increased. Since the
rise of an economic crisis in the U.S., there has been an increase in unemployment which
may result in a greater number of residents spending more time at home, and therefore
increasing home energy use. Moreover, many cities, businesses, and institutions have
implemented plans where employees work from home a few days a week to avoid com-
muting, and some of the positive effects associated with reductions in travel may be offset by
increased home energy use.

PRIZM lifestyle categories were not an important explanatory variable in our models.
This may be explained in part by the fact that income and education are factors used to
develop PRIZM groups, but individually might be more important drivers of energy use
than the PRIZM groups themselves. However, we only looked at four different PRIZM
categories in detail, which may not reflect dynamics among all 66 groups. In the future,
analyzing residents from more PRIZM groups may improve estimates of lifestyle
impacts on energy use.

As lifestyle categories have been shown to describe tree cover across cities like Baltimore
and Raleigh (Grove et al. 2006a; Bigsby et al. in prep 2012), we were further interested in
whether different neighborhoods identified by PRIZM categories had significantly different
environmental attitudes (NEP score), as well as mean standardized energy use. We compared
NEP scores among the PRIZM lifestyle groups and found that Up and Comers (Group 24)
used the least amount of energy and had significantly higher NEP scores than the other three
lifestyle categories we sampled (Figs. 1 and 2). These results suggest an expanded analysis
of more PRIZM groups may provide evidence that lifestyle, environmental attitudes, and
energy may be related.

The lowest socio-economic status group, the Bench Park Seniors (Group 60), used
the most amount of energy per square foot (Fig. 1). As the thermostat settings varied
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little among these groups, this analysis further suggests people living in the least
efficient homes used the most energy, and perhaps more importantly, the people who
are least likely to afford higher energy bills were using the most energy per square
foot. This brings up a series of interesting questions relating to environmental justice:
(1) Did they not have control over their home efficiency choices (i.e., they are
renters or could not afford to retrofit their homes), or (2) Were they not able to
access information about how to make their homes more efficient? Although, lack of
awareness associated with potential energy retrofits may be a bigger issue for energy
efficiency than the renter/homeowner dynamics (Granade et al. 2009), we did not
specifically include home ownership in our study and therefore cannot determine the
role of this potential explanatory variable. We did see evidence that income and
education played a role in home energy use, however, which may support the idea
that retrofits are more likely to occur when people know of, and have the resources
to implement, these modifications. Future research in the area should include a more
nuanced analysis of the mechanisms underlying these explanatory variables.

Our results suggest tree location, not overall tree cover, around the home influ-
enced home energy usage in Raleigh, NC. Most home energy use models predict
increasing tree cover around the home creates significant reductions in energy used
for cooling (Akbari 2002; Heisler 1986; McPherson and Rowntree 1993; Simpson
2002). We analyzed total percent tree cover 18 m around the home, and found that it
was not significant in our analysis, even for older homes. Our analyses on the
number of trees in various azimuths show that trees in certain locations may actually
increase energy use, therefore offsetting some positive shading effects associated with
trees elsewhere around the home. Many of the previous studies on the energy effects
of trees are based on models that do not allow for the possibility of increased
summertime energy use with increased tree cover, and therefore may be overestimat-
ing the amount of electricity savings associated with trees around homes. As propo-
nents of planting trees to offset carbon dioxide emissions assume that the energy
savings benefits significantly outweigh the direct benefits of carbon sequestration, our
results further question the efficacy of tree planting strategies for offsetting CO2

emissions.
Other empirical studies, ranging from Pennsylvania to California, have used detailed

measurement buffers, and found that trees in the south and west regions of the home
decreased summertime electricity use (Heisler 1986; McPherson 1994), while those on the
north end within 6.1 m tended to increase electricity use (Donovan and Butry 2009). While
our findings of increased energy associated with trees in the NE area of the home provide
evidence that trees in the northern region can have negative effects on energy use, our results
that trees within 18 m of the NW area of the home decreased energy use are inconsistent to
previous findings. The negative effects of trees on energy use could be because trees can add
more moisture to the air, trap in heat, and reduce wind speed which can actually increase air
conditioning demands (Donovan and Butry 2009; Huang et al. 1987; Souch and Souch
1993).

We expected to see that trees in Raleigh would have a larger influence on energy use,
especially because models predict the southern states are where people receive the greatest
energy related benefits. It is possible that at 55 % cover (Bigsby et al. in prep 2012) versus
the average urban tree cover of 28 % in the U.S. (McPherson 1994), the climate and
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evaporative cooling effects of trees in Raleigh could make shading effects at the
household scale less important. Specifically, previous research has found overall
evapotranspiration to account for most of the cooling savings (Akbari et al. 1992;
Huang et al. 1987; Jo and McPherson 2001; McPherson 1994; McPherson and
Rowntree 1993). Also, models assume that past a certain number of trees, there are
diminishing marginal returns on energy savings (McHale et al. 2007; Simpson and
McPherson 1996, 1998). Raleigh’s urban tree canopy may be acting like a rural
forest, where the individual effects of shade trees are less important than the overall
climate effects of the forest. To tease out the effects of shade trees on home energy
use, microclimate data and detailed buffer measurements will have to be incorporated
in future studies.

Conclusion

Tree planting projects in heavily forested urban areas may not be a substantial way to
achieve further carbon emission offsets. Modeling analyses on tree planting projects
that aim to offset carbon emissions have concluded that the majority of the CO2 offset
is from the reduction in energy used for cooling buildings, not from the direct
sequestration of carbon (McPherson and Rowntree 1993; Pataki et al. 2009). However,
our study suggests energy reductions achieved through tree planting in southern cities
with high tree cover may be small even if trees are planted strategically. This could
be because the overall climate and evaporative cooling effects of the urban forest
effectively reduced additional direct shading effects. Alternatively, benefits provided
by trees in one location may be offset by energy costs associated with trees in another
location. These results enhance our general understanding of the complexities associated with
tree placement and its potential effects on home energy use.

Furthermore, our results suggest built, natural, and social environments influence
summer energy usage in the Southeast U.S. The social (e.g., behavior, neighborhood
history, perceived comfort) and built environment (e.g., house size, AC efficiency) had
more impact than the natural environment (e.g., tree cover and position). The inclu-
sion of the social environment in empirical models of energy use represents a novel
addition to studies traditionally focusing on connections between building character-
istics and vegetation (Abbott and Meentemeyer 2005; Laverne and Lewis 1996; Pandit
and Laband 2010). Studies that have focused solely on building and vegetation
characteristics cite occupant behavior as additional necessary data for future studies
(Laverne and Lewis 1996; Pandit and Laband 2010). By looking at the social, built,
and natural environments together, we obtained a more comprehensive model of home
energy use. Accordingly, efforts to target home energy reduction should continue to
focus on building attributes, but with a renewed emphasis on human behavior. Given
the importance of thermostat settings, education level, and length of time the home is
occupied, these efforts should focus on changing behaviors by taking an approach that
makes efficiency more convenient, increases motivation, and provides more actionable
and pertinent information (Carrico et al. 2011). Therefore, an effective reduction in
energy use and emissions will come from building efficiency, energy conservation
actions based on human behaviors, and conservation education.
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APPENDIX A

Descriptive statistics

A. Weighted inside temperature:

& Daytime (9 am–5 pm) thermostat settings and nighttime (5 pm–8 am) thermostat
settings were reported for weekdays and weekends

& Calculated average daily and nightly thermostat setting

– Avg. day or night temperature0((5*temp weekday)+(2* temp weekend))/7
& Weighted inside temp0(day avg. *0.33)+(night avg. * 0.67)
& If air conditioner was OFF, a value of 95 °F was used

B. Differentials:

& Differential 0 outside temperature-inside temperature
& Differential calculated for daytime and nighttime for each month using average low

outside temperature, average high outside temperature, and weighted average for
inside temperature based on thermostat settings. Then, calculated one differential
per month from averaging day and night differential.

C. Manipulating/Collapsing variables:

& Use average age of all air conditioner units if more than one unit.
& Air conditioner types are ‘Central’ and ‘Other’ based on sample sizes. Other is any type

or combination of units other than central. (Central 0 154, central and window 0 4,
central and wall 0 3, window 0 14, and wall 0 2).

& Income: use midpoint of range for each residence. Highest income category calcula-
tions: divide other incomes (midpoints) in half and add to the high value of $150,000 or
more.

& Missing income data: use mean from data for each group (12: $217,838) (24:
$145,313) (47: $40,125) (60: $28,857)

Table 7 2008 and 2009 outside temperatures as report by NOAA

Month/Year Average low °F Average high °F Monthly average °F

June 2008 68.3 93 80.7

July 2008 68.4 89.5 79.0

August 2008 67.6 89.3 78.5

June 2009 67.6 89.1 78.3

July 2009 68.6 90.5 79.5

August 2009 70.4 90.3 80.3
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& Interpolate temperatures for air conditioners with settings (high, medium, low) by
graphing kWh/ sq. ft. vs. mean inside temperature for known values. High setting 0 3rd
quartile 73 °F, Medium setting 0median 75.57 °F, and Low setting 0 1st quartile 78 °F.

& Made comfort level into two categories based on sample sizes. Uncomfortable 0 ‘Very
Uncomfortable,’ ‘Uncomfortable,’ or ‘Neutral.’ Comfortable 0 ‘Very Comfortable’ or
‘Comfortable.’

& Made race into two categories based on sample sizes: ‘White’ and ‘Black/Other’
based on White0124, Black049 and Other03.

& Education level: (1) ‘No high school,’ ‘High school,’ and ‘Vocational’ combined
into one category; (2) ‘Some college and associates degree’ into one category; (3)
‘Bachelors’; (4) ‘Master’s,’ ‘Doctoral,’ and ‘Professional’ into one category.
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