Environmental Life Cycle Assessment PSE 476/FB 576

Lecture 13: Global Warming and Carbon Footprinting

Richard Venditti

Fall 2016

Richard A. Venditti Forest Biomaterials North Carolina State University Raleigh, NC 27695-8005

Richard_Venditti@ncsu.edu Go.ncsu.edu/venditti

Introduction to Global Warming and Carbon Footprinting

Dr. Richard Venditti Forest Biomaterials North Carolina State University

Source if no other reference appears:

This Summary for Policymakers should be cited as:

IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.]

Global Warming Changes

CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN HEMISPHERE SNOW COVER

Figure SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for the period 1961–1990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). (FAQ 3.1, Figure 1, Figure 4.2, Figure 5.13)

Global Carbon Cycle

• The velocity of climate change may have more impact than the absolute value of the changes

Changing temperature in California.

SR Loarie et al. Nature 462, 1052-1055 (2009) doi:10.1038/nature08649

nature

Global Warming Predictions: Uncertainty

Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the ±1 standard deviation range of individual model annual averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right indicate the best estimate (solid line within each bar) and the **likely** range assessed for the six SRES marker scenarios. The assessment of the best estimate and **likely** ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy of independent models and observational constraints. {Figures 10.4 and 10.29}

Changes in GHGs

- Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750
- Now far exceed pre-industrial values determined from ice cores spanning many thousands of years
- The global increases in
 - carbon dioxide concentration are due primarily to fossil fuel use and land use change,
 - Methane and nitrous oxide are primarily due to agriculture.

Figure SPM.1. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols with different colours for different studies) and atmospheric samples (red lines). The corresponding radiative forcings are shown on the right hand axes of the large panels. [Figure 6.4]

Global Carbon Cycle

Fig. 1 Estimates of the global pools and fluxes between them.^{1,4,5,7,152}

Global Warming

Figure 2. Ice core record from Vostok, Antarctica, showing the nearsimultaneous rise and fall of Antarctic temperature and CO2 levels through the last 350,00 years, spanning three ice age cycles. However, there is a lag of several centuries between the time the temperature increases and when the CO2 starts to increase. Image credit: <u>Siegenthalter et al., 2005, Science</u>

Global Warming Potential (GWP)

- relative measure of how much heat a <u>greenhouse gas</u> traps in the atmosphere.
- compares the amount of heat trapped by a certain mass of the <u>gas</u> in question to the amount of heat trapped by a similar mass of <u>carbon dioxide</u>.
- commonly determined over a span of 20, 100 or 500 years.
- GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1).

How do we calculate the global warming potential?

How we measure the warming effect of greenhouse gases

- The warming effect of greenhouse gases depends on the quantity of the green house gas present in the atmosphere
- GHGs decay over time **at different rates**

CO₂ Decay Function $C(t) = a_0 + \sum_{i=1}^{3} a_i e^{-1/\tau_i}$ (7-1)

 $a_0=0.217$, $a_1=0.259$, $a_2=0.338$, $a_3=0.186 \tau_1=172.9$ years, $\tau_2=18.51$ years, $\tau_3=1.186$ years

Other GHGs Decay Function

$$C(t) = e^{-1/\tau}$$

Decomposition of GHG Gasses in Atmosphere

Global Warming Potential Calculation

$$GWP_i^{TH} = \frac{\int_0^{TH} \alpha_i C_i(t) dt}{\int_0^{TH} \alpha_{CO2} C_{CO2}(t) dt}$$
(7-4)

 $GWP_i^{TH} = Warming due to gas of interest$ Warming of CO₂

 α_i represents the radiative efficiency for a species of gas and C_i represents the decay function for the species of gas as a function of time.

Global Warming Potential Calculations Carbon Dioxide (CO2) Methane (CH4) and Dinitrogen Oxide (N2O)

Year	Carbon dioxide		Methane			Dinitrogen oxide		
	Instantaneous	Cumulative	Instantaneous	Cumulative	GWP (t)	Instantaneous	Cumulative	GWP (t)
	impact	impact	impact	impact		impact	impact	
	W.m ⁻²	W.m⁻²	W.m ⁻²	W.m⁻²	kg CO₂ eq	W.m⁻²	W.m⁻²	kg CO ₂ eq
1	1.69E-15	1.69E-15	1.75E-13	1.75E-13	103	3.87E-13	3.87E-13	229
2	1.53E-15	3.22E-15	1.61E-13	3.35E-13	104	3.84E-13	7.71E-13	240
3	1.44E-15	4.65E-15	1.48E-13	4.84E-13	104	3.81E-13	1.15E-12	247
4	1.38E-15	6.04E-15	1.37E-13	6.21E-13	103	3.77E-13	1.53E-12	253
5	1.34E-15	7.38E-15	1.26E-13	7.47E-13	101	3.74E-13	1.90E-12	258
6	1.31E-15	8.69E-15	1.16E-13	8.63E-13	99	3.71E-13	2.27E-12	262
7	1.28E-15	9.97E-15	1.07E-13	9.70E-13	97	3.67E-13	2.64E-12	265
8	1.26E-15	1.12E-14	9.90E-14	1.07E-12	95	3.64E-13	3.01E-12	268
9	1.23E-15	1.25E-14	9.14E-14	1.16E-12	93	3.61E-13	3.37E-12	270
10	1.21E-15	1.37E-14	8.43E-14	1.25E-12	91	3.58E-13	3.72E-12	272

Radiative Forcing Capacity (RF) and GWP

- RF = the amount of energy per unit area, per unit time, absorbed by the greenhouse gas, that would otherwise be lost to space
- GWP is the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas
- where *TH* is the time horizon
- *RFi* is the global mean RF of component *i*
- *ai* is the RF per unit mass increase in atmospheric abundance of component *i* (radiative efficiency),
- [*Ci*(*t*)] is the time-dependent abundance of *i*,
- r stands for reference gas

Global Warming Potential Values Time horizons: 20, 100, and 500 years

Table 2.14. Lifetimes, radiative efficiencies and direct (except for CH₄) GWPs relative to CO₂. For ozone-depleting substances and their replacements, data are taken from IPCC/TEAP (2005) unless otherwise indicated.

Industrial Designation			Radiative	Global Warming Potential for Given Time Horizon			
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	[⊳] 1.4x10 ^{–5}	1	1	1	1
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153
Substances controlled b	by the Montreal Protoco	bl					
CFC-11	CCl ₃ F	45	0.25	3,800	6,730	4,750	1,620
CFC-12	CCl ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400
CFC-113	CCI ₂ FCCIF ₂	85	0.3	4,800	6,540	6,130	2,700
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,730
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575
Halon-2402	CBrF ₂ CBrF ₂	20	0.33		3,680	1,640	503
Carbon tetrachloride	CCI ₄	26	0.13	1,400	2,700	1,400	435
Methyl bromide	CH₃Br	0.7	0.01		17	5	1
Methyl chloroform	CH₃CCI₃	5	0.06		506	146	45
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	549
HCFC-123	CHCl ₂ CF ₃	1.3	0.14	90	273	77	24
HCFC-124	CHCIFCF ₃	5.8	0.22	470	2,070	609	185
HCFC-141b	CH ₃ CCl₂F	9.3	0.14		2,250	725	220
HCFC-142b	CH ₃ CCIF ₂	17.9	0.2	1,800	5,490	2,310	705
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	37
HCFC-225cb	CHCIFCF2CCIF2	5.8	0.32		2,030	595	181
Hydrofluorocarbons							
HFC-23	CHF ₃	270	0.19	11,700	12,000	14,800	12,200
HFC-32	CH ₂ F ₂	4.9	0.11	650	2,330	675	205
HEC 195		20	0.03	2 800	6 350	2 500	1 100

Global Warming Potential Values

	Lifetime	GWP time horizon			
	(years)	20 years	100 years	500 years	
		1	1	1	
Carbon dioxide	Complex	1	1	1	
		1	1	500 years 1	
	12	72	25	7.6	
Methane	12	62	23	7	
	12	56	21	6.5	
	114	289	298	153	
Nitrous oxide	114	275	296	156	
	120	280 310 17	170		
	270	12,000	14,800	12,200	
HFC-23	260	9,400	1 1 1 1 25 7.6 23 7 21 6.5 298 153 296 156 310 170 14,800 12,200 12,000 9,800 1,430 435 1,300 400 1,300 420 7,390 11,200 5,700 8,900 6,500 10,000		
	264	9,100	11,700	9,800	
	14	3,830	1,430	435	
HFC-134a	13.8	3,300	1,300	400	
	13.8	3,400	1,300	420	
	50,000	5,210	7,390	11,200	
CF ₄ (PFC)	50,000	3,900	5,700	8,900	
	50,000	4,400	6,500	10,000	
	3,200	16,300	22,800	32,600	
Sulfur hexafluoride	3,200	15,100	22,200	32,400	
	3,200	16,300	23,900	34,900	

http://ghginstitute.org/2010/06/28/what-is-a-global-warming-potential/

Row 1: 2007 IPCC AR4 (See Chapter 2 of Working Group I report) Row 2: 2001 IPCC TAR (See Chapter 6 of Working Group I report) Row 3: 1996 IPCC SAR (See Chapter 2 of the Working Group I report)

Radiative Forcing

- rate of energy change per unit area of the globe as measured at the top of the atmosphere
- expressed in units of Watts per square meter
- LOSU : level of scientific understanding

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in this figure due to their episodic nature. The range for linear contrails does not include other possible effects of aviation on cloudiness. {2.9, Figure 2.20}

RADIATIVE FORCING COMPONENTS

Lecture 13 (cont.) Carbon Footprint: Impact Assessment Method

- Partial life cycle analysis
- **Historicially**: the total set of greenhouse gas (GHG) emissions caused by an organization, event, product or person (UK Carbon Trust, 2009)
- **Practically:** A measure of the total amount of carbon dioxide (CO₂) and methane (CH₄) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent (CO₂e) using the relevant 100-year global warming potential (GWP100) (Wright etal, Carbon Mgmt, 2011)
- "How much net GWP gasses go into the atmosphere"
- (often there are trade offs not considered when doing just a carbon balance)

• IPCC is the leading authority in evaluating the science behind GWP

Revision Year	CO ₂ equivalents for CH ₄	CO_2 equivalents for N ₂ O
1996	21	310
2001	23	296
2006	25	298

- Often products and flows are specified as having a certain carbon content
- To convert the carbon content to CO₂, must multiply by the conversion factor:
 - 44 kg CO₂ / 12 kg Carbon

- Example 400 kg of a charcoal filter cartridge is put in a landfill. The cartridge is 10% metal and 90% carbon filter. The carbon filter has a carbon content of 98% and does not degrade.
- What is the amount of carbon that goes into the landfill in terms of CO₂?

 Example: loblolly pine grows at 17 dry tonne per hectare per year. What is the amount of CO₂ take up for 1 hectares of pine if the pine has a % carbon of 52%?

• Repeat for unmanaged hardwoods with a growth of 2.2 dry tonne per hectare per year and a carbon content of 50%?

Carbon Footprint: Accounting for GHG's in the atmosphere

Carbon footprint = Σ GHG's flowing IN - Σ GHG flowing OUT

(in kg CO2 equivalents)

- Ignore the CO2 taken from atmosphere into plants. If this is done then ignore all biogenic CO2 emitted. Take credit for CO2 storage over the GWP time horizon. (ignore biogenic flows, more popular)
- Take a credit for CO2 taken in from plants. If this is done then take into account all biogenic CO2 emitted. Do not take credit for CO2 storage, as this would be double counting CO2 removed from the atmosphere. (Consider biogenic flows, less popular, harder to track, but shows C flows more explicitly)

 Biogenic material decay/burning that produces methane or N2O must be considered

• Non renewable resources (coal, oil) are considered since they have been formed over very long time scales and are not being formed over time scales of interest Materials, transportation, energy often have associated with them carbon emissions

 Long term storage of carbon away from the atmosphere is considered a negative C footprint contribution if a credit was not taken for plant growth

- When one product with a lower C footprint replaces another with larger C footprint, and thus the larger C footprint is not used, then an avoided C input to the atmosphere is claimed, a negative C footprint contribution: termed displacement
- **Example 1,** replace non-renewable with renewable biomass that only emits biogenic CO2 in this case:

• When one product with a lower C footprint replaces another with larger C footprint, and thus the larger C footprint is not used, then an avoided C input to the atmosphere is claimed, a negative C footprint contribution: termed *displacement* **Example 2, replace non-renewable (displaced product)** with lower footprint non-renewable (product of interest):

31

Net carbon footprint is Y-Z.

Carbon footprint exercise (1)

A factory typically burns coal to produce electricity. The factory requires 114 MWh of electrical energy per week and the emission factor for the coal based electricity is 710 kg CO₂(eq)/MWh. What is the carbon footprint of displacing the coal electricity with a biofuel that has an emission factor of 24 CO₂(eq)/MWh? (The emission factor accounts for all of the non biogenic CO2 emissions from using the biofuel).

Carbon footprint exercise (2)

- It is found that the final fate of Sports Illustrated magazines is that 10% is stored in houses and libraries for over 100 years. The remaining 90% is sent to landfills. In the landfills, 85% of the magazine never decomposes. Of the part of the magazine that does decompose, 50% by weight decomposes to methane and is lost to atmosphere and 50% decomposes to CO₂. The biogenic carbon content of the magazine is 50%. If the magazine weighs 0.3 kg, what is the carbon footprint (using a 100 year time horizon) per one magazine for its end-of-life stage only?
- The GWP of CO_2 is 1 kg $CO_2(eq)/kg$.
- The GWP of methane is 25 kg CO₂(eq)/kg.
- The GWP of N_2O is 298 kg $CO_2(eq)/kg$.
- Formula weight of Carbon =12
- Formula weight of Carbon Dioxide = 44

Basic Steps of the Carbon Footprint

- Define the Goal and Scope:
 - Define the goal
 - Define the scope
 - Functional unit (and ref flows or basis of calculation)
 - System boundary: Operations included, life cycle stages included
 - Time Scale
 - Characterization factor source
 - Others.....
- Complete the Life Cycle Inventory:
 - Emissions of GHG's
 - Storage of Carbon
- Perform the life cycle assessment
 - Apply appropriate characterization factors for emissions
 - CO2 = 1
 - CH4 = 25
 - N2O= 298
 - Etc.....
 - Carbon footprint = Sum of the emissions (+) and storage (-)
- Evaluate Results, Interpret, Report
 - Hot spots
 - Comparison of alternatives

Carbon Footprint: CO2 list.org

CO ₂ is not caused l	oy others, it is		s list may confirm what yo our choices: Heating & co		nay surprise you. 1g products; Red meat versus chicken and grain; Cars and		
CO2LIST.ORG	KILOS OF CO2	POUNDS OF CO,	UNITS OF MEASURE FOR EACH ITEM		1 0		
	(includes effect of other greenhouse gases)		(We and most others measure CO, by		Complete sources and calculations are at xts CO2List.org Data from US, except when the following symbols appear:		
Bold shows some			weight. Its size varies, so it can't be		† Data are from Australia		
interesting items			measured in volume. For other items we pick appropriate units, shown below.)		France has data (in English) for many items, not yet incorporated		
					here. Contact us. 16 March 2012		
	CO	POUN	DS RELEASED W	HILE M	AKING PRODUCTS		
		21001	DS KELEASED W			1	
				Pounds of CO, per 500			
1-FOOD	KILOS OF CO2	POUNDS OF CO2		Calories (this is 1/4 of a daily 2,000- Calorie diet)	Sweden labels individual food items		
Red meat	22	22		12	92% from production of animals & their feed, including N2O & methane. Remainder is transport of inputs & meat, and selling. (interesting article by former Texas Ag Commissioner http://jimhightower.com/node/6901)		
Chicken, fish, eggs	6	6	Pounds CO ₂ per pound of product, or Kilos of CO2 per kilo of product		\$1% from production of feed & meat		
Dairy	4	4			91% from production of feed & animals		
Cereals, carbohydrates	3	3			75% from production of crops		
Fruit, vegetables	2	2			74% from production of crops		
Oils, sweets, condiments	2	2			74% from production of crops		
Balanced Diet				1.7	USDA Food Guide: 53% carbohydrate, 29% oils, 18% protein (here protein is chicken, fish, eggs)		
					http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2005/2005		
			l 2008 "Food-Miles and the Relat eather, biofuels) release greenho		http://pubs.acs.org/doi/full/10.1021/es702969f http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf		
	and Crutzen et				http://www.atmos-chem-phys.net/8/389/2008/acp-8-389-2008.html		
	(d) methane (C	H₄) created in	animal stomachs and intestines	, (e)	http://icsu.org/		
			cularly chapters 6 on land use and 5 on		http://cip.cornell.edu/biofuels/		
Potato chips‡	2	2			Mostly from growing crops: N_2O from nitrogen-fixing bacteria, fuel		
Orange juice	0.9-1.4	0.9-1.4	pounds CO ₂ per pound of product		The figures in the section above are larger, and come from a much more complete methodology.		
Bottled smoothie‡	1.1	1.1	kilos CO ₂ per kilo of product				
Organic new potato‡	0.29	0.29					
Potato, not organic‡	0.24	0.24					
	Sources: Carbo and Report CT		nonprofit, has a summary		http://www.carbon-label.com/individuals/product.html http://www.carbontrust.co.uk/Publicsites/cScape.CT.PublicationsOrd		
	Orange juice is from a Pepsico study reported in the NY Times.				id=CTC744 http://www.nytimes.com/2009/01/22/business/22pepsi.html/	3	
Carbon Footprint:

Japan's Central Research Institute of the Electric Power Industry's

Scopes within a carbon footprint

- Businesses keep track of who is in control of emissions/storage
- Scope 1: all direct GHG emissions from owned production;
- Scope 2: indirect GHG emissions from consumption of purchased electricity, heat or steam; and
- Scope 3: indirect GHG emission from systems such as extraction and production of purchased materials and fuels, transportation in *non-owned* vehicles, or production facilities operated by parties other than the user.

Life Cycle Inventory: Interpretation

- Check for completeness, consistency, errors.....
- Interpret....

Ba	asis of calculation (BoC, kg)	861.82556			
		Total	Scope 1	Scope 2	Scope 3
Total emissions,	including transport (kg CO ₂				
	eq./BoC):	3100	793.5	188.6	2118
Of which, total tran	sport (includes all transport				
	components):	161.2	0	0	161.2
Emissions from	n fuel used in manufacturing				
	(including transport)	839.2	647.5	0	191.7
Emissions from purc	hased electricity and steam	383.5	0	188.6	194.9
Emissions fron	n wood and fiber production				
	(including transport)	312.9	0	0	312.9
Emissions from ot	her raw materials (including				
	transport)	298.1	0	0	298.1
Emissions	from manufacturing wastes	146	146		0
Emiss	sions from product transport	62.53	0	0	62.53
Emissions from end	d of life (including transport)	1058			1058
Total carbon storage	changes (kg CO ₂ eq./BoC)	138.3			
Changes in fore	st carbon (kg CO ₂ eq./BoC)	0		thod used to	•
			estimat	e amount of	avg first
-	cts in use (kg CO ₂ eq./BoC)	37.4	pro	oduct in use:	order
Carbon in landfills	from products at end of life				
	(kg CO ₂ eq./BoC)	58.76			
Carbon in mill	landfills from manufacturing				
	wastes (kg CO ₂ eq./BoC)	42.1			

Life Cycle Analysis of Paper: Carbon Footprint Results

Go.ncsu.edu/venditti (downloads)

Summary

- GHG concentrations are rising abruptly
- From a scientific viewpoint these are expected to increase radiative forcing and global warming
- A carbon footprint of a service is a method to gauge the net GWP
 - Includes emissions
 - Includes storage
- The carbon footprint is a partial life cycle analysis and as should not be considered in isolation
 - Often there is a tradeoff between carbon footprint and other environmental impacts that should be considered

Summary

- Global Carbon Cycle
- Global Warming Potential
- CO₂ equivalent
- Radiative Forcing
- Time Horizon
- Carbon Footprint
- IPCC: International panel on climate change (<u>www.ipcc.ch</u>)
- Storage of carbon
- Emissions
- Displacement
- LOSU
- Basis of calculation: also known as the reference flow(s)
- Scope 1 Emissions
- Scope 2 Emissions
- Scope 3 Emissions

Carbon Footprint Example: Coated Paper (Catalog)

Data and Graphs from NCASI LCA P&W Grades, 2010 Software used from NCASI, FEFPRO

NCASI LCA NA P&W Grades, 2010

Life Cycle Analysis of Paper: Carbon Footprint Results

Go.ncsu.edu/venditti (downloads)

Basic Steps of the Carbon Footprint

- Define the Goal and Scope:
 - Define the goal
 - Define the scope
 - Functional unit (and ref flows or basis of calculation)
 - System boundary: Operations included, life cycle stages included
 - Time Scale
 - Characterization factor source
 - Others.....
- Complete the Life Cycle Inventory:
 - Emissions of GHG's
 - Storage of Carbon
- Perform the life cycle assessment
 - Apply appropriate characterization factors for emissions
 - CO2 = 1
 - CH4 = 25
 - N2O= 298
 - Etc.....
 - Carbon footprint = Sum of the emissions (+) and storage (-)
- Evaluate Results, Interpret, Report
 - Hot spots
 - Comparison of alternatives

Define the system footprint boundary

- Cradle to Grave of catalog paper, coated free sheet
- 100 years

 11. AVOIDED EMISSIONS AND OTHERS

 Benefits from sold electricity
 Avoided emissions: landfill methane capture and burning for energy
 Avoided emissions: product burning for energy
 Manufacturing biomass CO₂ emissions

Define the scope

- 100 years
- Scope 1: all direct GHG emissions from owned production;
- Scope 2: indirect GHG emissions from consumption of purchased electricity, heat or steam; and
- Scope 3: indirect GHG emission from systems such as extraction and production of purchased materials and fuels, transportation in *non-owned* vehicles, or production facilities operated by parties other than the user.

Define the Basis of Calculation

 Basis of Calculation (BoC) is the metric upon which all of the data input, calculations, and result output are based. For example, a BoC of 1000 kg of product (one metric tonne) means that data input such as quantity of raw material consumed is entered per 1000 kg of production (e.g., a BoC of 1000 kg and log input of 2000 kg means that 2 tonnes of logs are consumed in the production of 1 tonne of product).

Coated Freesheet Cut off NCASI to Grave
Coated Freesheet
coated woodfree
Cradle to Grave only in this version
1 mdst (5% water)
1 machine-dry short ton (5% water)
861.82556

Life Cycle Inventory: Forest Carbon Changes

- Must understand if the land that is being used to provide the amount of wood needed to make paper is being changed such that the net carbon stock on the land for 100 years is changing over many harvests
- Not commonly known, but can be important
- In developed countries, significant proportion is harvested sustainably and many certified

Forest name	carbon stock		n carbon carbon/BoC) Selected
	changes	value	value
Generic Forest	Constant Stock	0	0.00

Life Cycle Inventory: Wood and Fiber

- Wood and Fiber inputs into manufacturing
- Northern Hardwood chips example, but most cases have multiple inputs

		Proposed defaults	From owned operations	From non- owned operations
Quantity (kg/	BoC, dry basis)	No default		261
Moisture content as received (fraction between zero and one)		No default		0.5
Emissions for this fiber source	Scope 1	0.130		0
(kg CO2 eq./kg dry)	Scond 2	0.090		0
(kg CO2 eq./kg dry)	Scope 3	0.010		0.230
		Wet tonnes	0	0.522
Total shipped tonnes			0.52	2

	kg CO ₂ eq./BoC		
	Scope 1	Scope 2	Scope 3
Emissions for this fiber source	0	0	60.03
Truck, owned	0		0
Truck, non-owned			5.2728642
Rail, owned	0		0
Rail, non-owned			0.2209328
Water inland, owned	0		0
Water inland, non-owned			0
Water ocean, owned	0		0
Water ocean, non-owned			0
Total	0	0	65.523797
Transport only	0		5.4937971

Life Cycle Inventory: Fuels Consumed

• Coal, example

	-	Proposed defaults	Burned in owned operations	Burned in non-owned operations
Quantity (GJ HHV/E	BoC, dry basis)	No default	5.56	
Moisture content as received (fraction	between zero and one)	0.1	0.1	
	Combustion	90.32	90.32	N/A
Emissions for this fuel (kg CO ₂ eq./GJ HHV)		5.382	5.382	N/A
	Total	95.702	95.702	
		Transported tons	0.196744515	0
		Total transported tons	0.1967	44515

	kg CO ₂ eq./BoC			
	Scope 1	Scope 2	Scope 3	
Fuel-related emissions	502.1792		29.92392	
Truck, owned	0		0	
Truck, non-owned			0.053476	
Rail, owned	0		0	
Rail, non-owned			2.7437457	
Water inland, owned	0		0	
Water inland, non-owned			0.0642998	
Water ocean, owned	0		0	
Water ocean, non-owned			0	
Total	502.1792		32.785442	
Transport only	0		2.8615216	

Life Cycle Inventory: Fuels Consumed

• Black liquor, organic material byproduct of making paper

	_	Proposed defaults	Burned in owned operations	Burned in non-owned operations
Quantity (GJ HHV/E	BoC, dry basis)	No default	9.1	
Moisture content as received (fraction	between zero and one)	0.35	0.35	
	Combustion	0.637	0.637	N/A
Emissions for this fuel (kg CO ₂ eq./GJ HHV)		0	0	N/A
	Total	0.637	0.637	
		Transported tons	1	0
		Total transported tons	1	

	kg CO ₂ eq./BoC				
	Scope 1 Scope 2 Scope 3				
Fuel-related emissions	5.7967		Ō		
Truck, owned	0		0		
Truck, non-owned			0		
Rail, owned	0		0		
Rail, non-owned			0		
Water inland, owned	0		0		
Water inland, non-owned			0		
Water ocean, owned	0		0		
Water ocean, non-owned			0		
Total	5.7967		0		
Transport only	0		0		

Life Cycle Inventory: Other Materials

• Example Latex coating material

	Proposed defaults	User entry
Quantity (kg/BoC, dry basis)	25.85	25.85
Moisture content as received (fraction between zero and one)	0	0
Upstream emissions for this raw material (kg CO ₂ eq./kg dry)	2.628	2.628
Total received tonnes (wet)	0	.02585

	kg CO ₂ eq./BoC			
	Scope 1	Scope 2	Scope 3	
Upstream Emissions			67.9338	
Truck, owned	0		0	
Truck, non-owned			0.62967	
Rail, owned	0		0	
Rail, non-owned			0.093268	
Water inland, owned	0		0	
Water inland, non-owned			0	
Water ocean, owned	0		0	
Water ocean, non-owned			0	
Total	0		68.65674	
Transport only	0		0.722939	

Life Cycle Inventory: Electricity and Steam

• Need to know quantities and location of electricity

Quantity (MWh/BoC)	Region supplying the electricity	Default emission factor (kg CO ₂ eq./MWh)		Selected emission f (kg CO ₂ eq./MW		
	electricity	Scope 2	Scope 3	Scope 2	Scope 3	Used for
0.0183	Alabama	711.0	18.2	711.0000	18.2000	Combined
0.0165	Alabama	711.0	10.2	711.0000	10.2000	operations
0.0518	Kentucky	1045.4	15.4 25.3 1045.40	1045.4000	25.3000	Combined
0.0516	Kentucky	1045.4	25.5	1045.4000	25.3000	operations
0.0157	Maryland	711.5	18.2	711.5000	18.2000	Combined
0.0137	ivial ylariu	711.5	10.2	711.5000	10.2000	operations
0.0306	Maine	393.6	11.5	393.6000	11.5000	Combined
0.0300	Ivialite	393.0	11.5	393.0000	11.5000	operations
0.0515	0.0E1E Michigan	Michigan 738.2 18.8	19.9	738.2000	18.8000	Combined
0.0515	Michigan	730.2	18.8	730.2000	10.0000	operations

kg CO ₂ eq./BoC	
Scope 2	Scope 3
13.0113	0.33306
54.15172	1.31054
11.17055	0.28574
12.04416	0.3519
38.0173	0.9682

Life Cycle Inventory: Electricity and Steam

• For steam used a proxy:

Quantity (GJ/BoC)	Steam supplier/Source of emission factor	Default emission factor (kg CO ₂ eq./MGJ) Scope3	Selected emission factor (kg CO ₂ eq./GJ) Scope 3
0.0434	used natural gas EF	No default	63.324

Life Cycle Inventory: Manufacturing Wastes

• On site landfill that decays

Results

	Proposed default	Selected value
Quantity of manufacturing wastes placed in industry landfills (dry kg/BoC)	43.09	83.50
Fraction of carbon in wastes	0.275	0.275
Fraction of carbon in wastes permanently stored	0.50	0.50
Fraction of wastes from owned operations	No default	1.00

1		-
	Scope 1	Scope 3
Mass of methane		
emitted from mill		
landfills (kg CO ₂		
eq./BoC)	172.21875	0
Mass of carbon		
permanently stored in		
mill landfills (kg CO_2		
eq./BoC)	42.097	91667
Scope 1 Biogenic CO ₂		
emitted (kg CO_2		
	23.1538542	

Life Cycle Inventory: Product Transport

• All transport steps involved, default emmission data used

Product	# T23 Code 293 USDOT 99,04 and USEPA 06 (printer to customer) 91%			
	dvertising material, commercial or trade catalogues, and similar printed			
transported:	products			
Quantity (dry				
kg/BoC):				
Moisture content:	0.08			

	Proposed defaults		Owned transportation		Non-owned transportation	
Mode	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance , km
Truck	1	403.9			1	403.9
Rail	0	0				
Freshwater (inland) shipping	0	0				
Marine (ocean) shipping	0	0			l	

	kg CO₂ eq./BoC			
	Scope 1	Scope 3		
Truck	0		32.19272	
Rail	0		0	
Marine (ocean) shipping	0		0	
Inland (freshwater) shipping	0 0		0	
Total	0		32.19272	

Life Cycle Inventory: Product Transport

• All transport steps involved, default emmission data used

Transportation mode	(kg C	(kg CO2 / km*tonne)				
Transportation mode	Combustion	Precombustion	Total			
Truck	0.0805	0.013	0.0935			
Rail	0.0191	0.0031	0.0222			
Marine (ocean)	0.0163	0.0022	0.0185			
Inland (freshwater)	0.0288	0.0046	0.0334			
Small truck (EOL)			1.26			

Life Cycle Inventory: End of Life: Carbon in Products

- How much carbon exists in products. Needed for end of life and carbon storage in products.
- Half life, number of years for the existing paper in use to half
- C permanently stored (in landfills)

Product	Carbon content (fraction)	Half-life (years)	Carbon permanently stored (fraction)
bleached kraft board	0.50	2.54	0.12
bleached kraft paper (packaging & industrial)	0.48	2.54	0.61
coated mechanical	0.50	2.54	0.85
coated woodfree	0.50	2.54	0.12
average containerboard	0.50	2.54	0.55
newsprint	0.46	2.54	0.85
recycled boxboard	0.50	2.54	0.55
recycled corrugating medium	0.50	2.54	0.55

Life Cycle Inventory: End of Life

- Define the amount recycled
- Define the amount burned for energy and landfilled
- Built in data about landfill emissions

The final product is probably used and disposed of in:			U.S.		
Fractions				Transport di	stances, km
Disposition	Proposed	User		Proposed	User Selection
	defaults	Selection		defaults	User Selection
Recycling	0.4210	0.388		32.18	32.18
Landfill	0.4696	0.498		32.18	32.18
Burning w/ energy recovery	0.1094	0.114		32.18	32.18

Burning assumptions:

- GHG emissions are mainly N₂O.

Landfill assumptions:

- Landfills are assumed to be completely anaerobic.

50%

10%

- Fraction of gas transformed to methane:
- Fraction of methane oxidized to CO₂ in landfill covers

Life Cycle Inventory: End of Life

Mass of product remaining in use after 100 years (kg/BoC)	31 58112712
Mass product landfilled (kg product/BoC)	413.46172757
Mass carbon landfilled (kg C/BoC)	133.54813801
Mass carbon permanently stored (kg C/BoC)	16.02577656
Mass if carbon transformed to gas (kg C/BoC)	117.52236145
Mass of carbon transformed into methane (kg C/BoC)	58.76118072
Mass of carbon in methane not oxidized in landfill covers (kg C/BoC)	52.88506265
Mass of carbon transformed into CO ₂ (kg C/BoC)	5.87611807
Mass of carbon in methane burned for energy recovery (kg C/BoC)	23.26942757
Mass of methane emitted (kg CH ₄ /BoC)	39.48751345
Landfill methane (kg CO ₂ eq./BoC)	987.1878361
Burning GHGs (kg CO ₂ eq./BoC)	0.946478653
Transport GHGs (kg CO ₂ eq./BoC)	69.88853723
Total EOL (scope 3) GHG emissions (kg CO ₂ eq./BoC)	1058.022852
Carbon storage (kg CO ₂ eq./BoC)	58.76118072

Life Cycle Inventory: Interpretation

- Check for completeness, consistency, errors.....
- Interpret....

Basis of calculation (BoC, kg)	861.82556			
	Total	Scope 1	Scope 2	Scope 3
Total emissions, including transport (kg CO2				
eq./BoC):	3100	793.5	188.6	2118
Of which, total transport (includes all transport				
components):	161.2	0	0	161.2
Emissions from fuel used in manufacturing				
(including transport)	839.2	647.5	0	191.7
Emissions from purchased electricity and steam	383.5	0	188.6	194.9
Emissions from wood and fiber production				
(including transport)	312.9	0	0	312.9
Emissions from other raw materials (including				
transport)	298.1	0	0	298.1
Emissions from manufacturing wastes	146	146		0
Emissions from product transport	62.53	0	0	62.53
Emissions from end of life (including transport)	1058			1058
Total carbon storage changes (kg CO ₂ eq./BoC)	138.3			
Changes in forest carbon (kg CO ₂ eq./BoC)	0		thod used to	•
			te amount of	U
Carbon in products in use (kg CO ₂ eq./BoC)	37.4	pro	oduct in use:	order
Carbon in landfills from products at end of life				
(kg CO ₂ eq./BoC)	58.76			
Carbon in mill landfills from manufacturing				
wastes (kg CO ₂ eq./BoC)	42.1			

Life Cycle Inventory: Interpretation

- Check for completeness, consistency, errors.....
- Interpret....

Life Cycle Analysis of Paper: Carbon Footprint Interpretation

Go.ncsu.edu/venditti (downloads)

Full Life Cycle Analysis of Paper: Carbon Footprint Interpretation

Table ES-6. LCIA Results – Catalog, Coated Freesheet

Impact category	Unit	Total (unit/ catalog)	1- Fiber procurement	2- Coated freesheet production	3- Production of catalogs	4- Transport and use	5- End- of-life	Storage in use and landfill
Global Warming (GW)	kg CO ₂ eq.	4.89E-01	5.4%	43.6%	15.7%	1.2%	37.7%	-3.4%
Acidification (AC)	H⁺ moles eq.	1.67E-01	7.6%	67.4%	21.1%	1.1%	2.9%	
Respiratory effects (RES)	kg PM _{2.5} eq.	6.52E-04	3.5%	77.9%	15.6%	0.3%	2.6%	
Eutrophication (EU)	kg N eq.	8.85E-04	1.9%	19.0%	6.2%	0.2%	72.8%	N/A
Ozone depletion (OD)	kg CFC- 11 eq.	2.63E-08	6%	53%	31%	4%	7%	
Smog (SM)	kg NOx eq.	2.10E-03	7.7%	36.4%	48.7%	1.8%	5.3%	
Fossil fuel depletion (FF)	MJ surplus	3.94E-01	9.3%	52.4%	29.8%	2.6%	5.9%	

^[1] Results obtained using the *ecoinvent* database only (see Section 9.3.1.2 for more details)

National Council for Air and Stream Improvement, Inc. (NCASI). 2010. *Life cycle assessment of North American printing and writing paper products*. Unpublished Report. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

Catalog weight is .135 kg, so GWP per tonne is 3620 kgCO2e

Summary

- GHG concentrations are rising abruptly
- From a scientific viewpoint these are expected to increase radiative forcing and global warming
- A carbon footprint of a service is a method to gauge the net GWP
 - Includes emissions
 - Includes storage
- The carbon footprint is a partial life cycle analysis and as should not be considered in isolation
 - Often there is a tradeoff between carbon footprint and other environmental impacts that should be considered

Summary

- Global Carbon Cycle
- Global Warming Potential
- CO₂ equivalent
- Radiative Forcing
- Time Horizon
- Carbon Footprint
- IPCC: International panel on climate change (<u>www.ipcc.ch</u>)
- Storage of carbon
- Emissions
- Displacement
- LOSU
- Basis of calculation: also known as the reference flow(s)
- Scope 1 Emissions
- Scope 2 Emissions
- Scope 3 Emissions