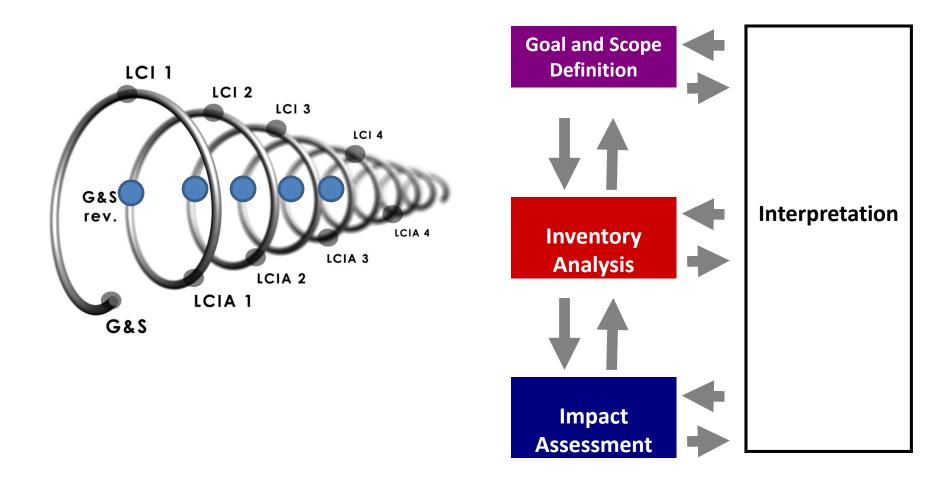

Environmental Life Cycle Assessment PSE 476/WPS 576/WPS 595-005

Lecture 5: Goal and Scope:

Goal definition


- Goal of study should unambiguously state (ISO 14044: 2006E):
 - The intended application
 - Reasons for carrying out the study
 - Intended audience (who will the LCA be communicated to?)
 - Whether the results are intended to be used in comparative assertions intended for the public
 - **Comparative assertion:** environmental claim regarding the superiority or equivalence of one product versus a competing product that performs the same function.

Goal definition

- **Goal:** Reasons for carrying out the study
 - ID opportunities to improve the environmental performance of products at various points in their life cycle
 - Informing decision makers in industry government, non government organizations (NGO's)
 - Strategic planning, priority setting, product or process design or redesign
 - Selection of relevant indicators of environmental performance, including measurement techniques
 - Marketing
 - Environmental claims
 - Eco labeling
 - Environmental product declaration

Goal definition

Scope

 Project Scope "The work that needs to be accomplished to deliver a product, service, or result with the specified features and functions."

 A Guide to the Project Management Body of Knowledge (PMBOK Guide) - Fourth Edition. Project Management Institute, 2008. ISBN 978-1-933890-51-7

Scope definition

- Scope definition must be in accordance with the goal definition
- Scope definition should consider and clearly describe (ISO 14044: 2006E):
 - The product system studied
 - The functions of the product(s) studied
 - The functional unit
 - The system boundary
 - Allocation procedures
 - LCIA methodology and types of impacts
 - Interpretation to be used
 - Data requirements
 - Assumptions
 - Value choices and optional elements
 - Limitations
 - Data quality requirements
 - Type of critical review, if any
 - Type and format of the report required for the study
 - temporal scope
 - technological scope
 - allocation or system equivalency

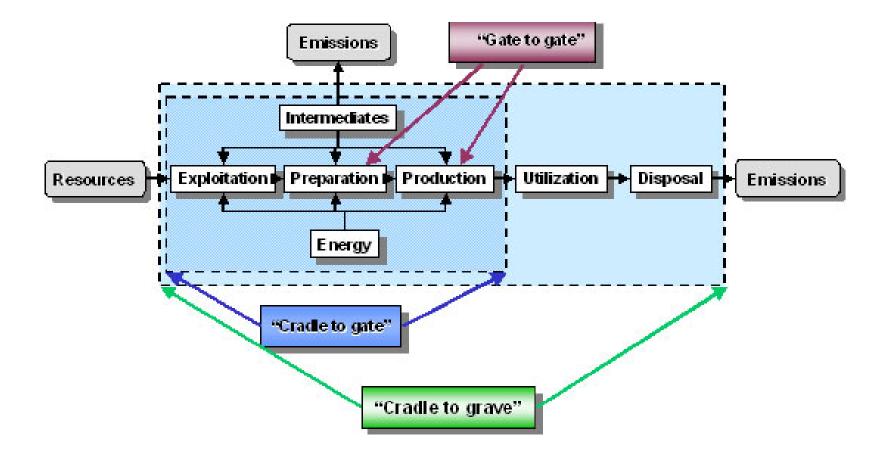
Flows

- Functional unit: Quantified performance of a product system for use as a reference unit (ISO 14044: 2006E)
- Reference flow: measure of the outputs from processes in a given product system required to fulfill the function expressed by the functional unit

Functional Unit and Reference Flows

- Example: We are critically evaluating the environmental LCA of students having breakfast. We believe there are two options that we would like to study:
 - A bowl of cereal
 - A traditional eggs and meat breakfast
- What is the functional unit?
- What are the reference flow(s)?

Functional Unit and Reference Flows


- Example: We are doing an LCA on electrical room heaters. One heater has a lifetime of 4000 1 hour uses and puts out 100 BTU/h of heat. Another heater has a lifetime marketed as 10 years, using the heater used for 4 months, with 8 hours use each day and puts out 75 BTU/h of heat. Another heater claims to have a lifetime of 10 years putting out 25 BTU/hr with continuos use.
- What is a good functional unit?
- What are the reference flow(s)?

System Boundary

- Which unit processes are included in the LCA
- Must be consistent with the goal
- Deletion of a life cycle stage, process, inputs or outputs only permitted if it does not significantly affect the overall conclusions
- Any decision to omit must be justified
- Ideally, the system boundary so that inputs and outputs are all elementary flows and product flows

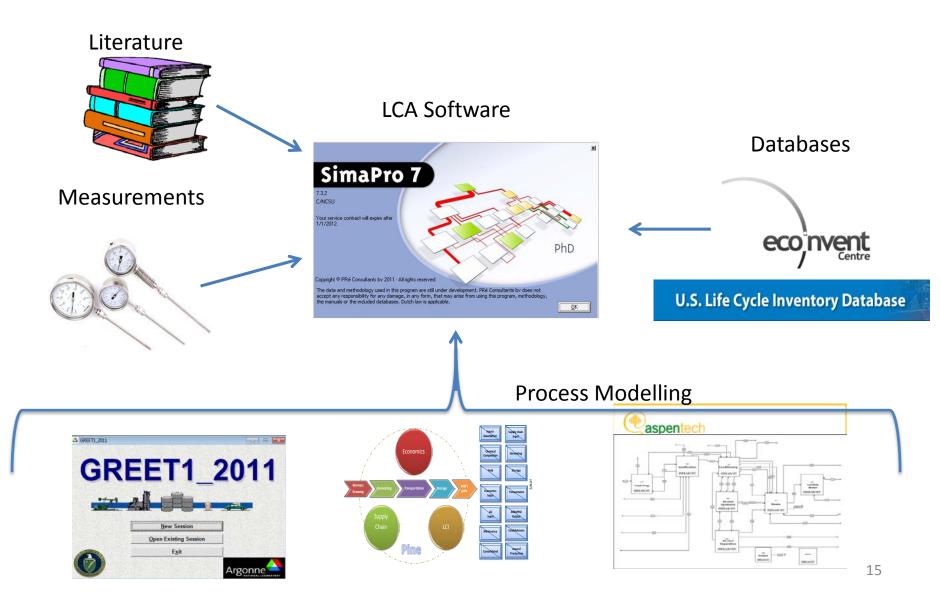
Different System Boundary Classifications:

http://www.steeluniversity.org/

Identify a system boundary for a laptop: Cradle to Gate, Cradle to Grave:

System Boundary

- Cut off criteria: specification of the amount of material or energy flow or the level of environmental significance associated with unit processes or product system to be excluded from the study
 - Mass, all the inputs that contribute less than X% to the total mass input of the product system
 - Energy, all the inputs that contribute less than X% to the total energy input of the product system
 - Environmental significance, any input that contributes less than X% of a the environmental significance of a specially selected environmentally relevant individual data
- Similar criteria for outputs



System Boundary

- A laptop is built with the following inputs:
 - 10 grams of copper
 - 20 grams of aluminum
 - 1 gram of lead
 - 0.5 grams of lithium
 - 0.5 grams of cobalt
 - 50 grams of polycarbonate
 - 10 grams of polyethylene
 - 2 grams of epoxy
 - 15 gram of rubber
- Using a 1% mass cut off criteria, which of these would be included in the LCA?

Scope: Data Collection Methods

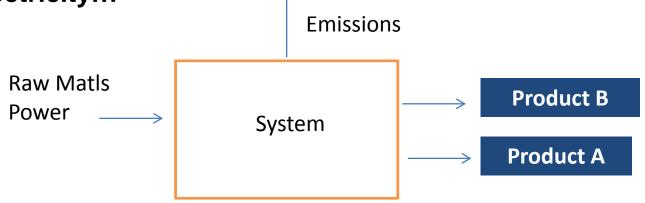
Allocation

• Allocation: partitioning the input and output flows of a process or a product system between the product system under study and one or more of the other product systems

Allocation Procedures

- Step 1: allocation should be avoided
 - by dividing the unit process into 2 or more subprocesses and tracking data for both separately
 - Expanding the system to include the additional functions of the related co-products
- Step 2: partition the inputs and outputs between products in a way that reflects underlying physical relationships
- Step 3: partition the inputs and outputs between products in a way that reflects other relationships between them, eg, economic value

Avoidance of Allocation: Divide the process

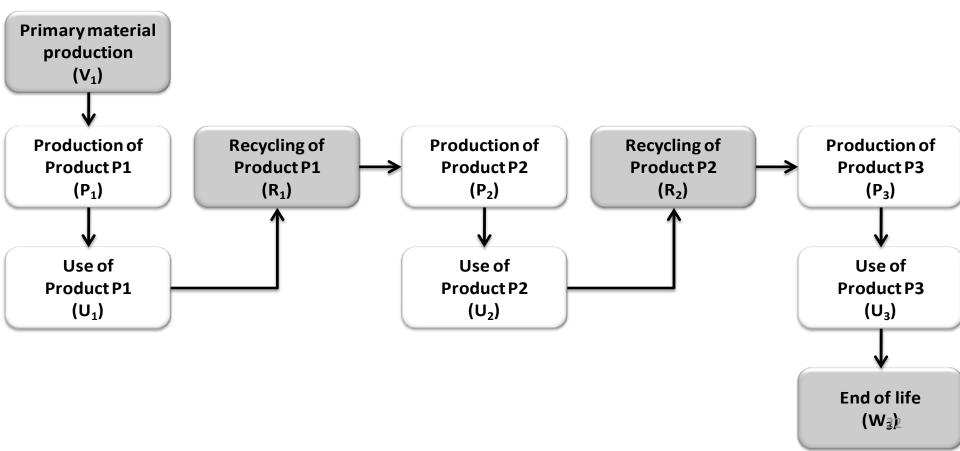

• Example: A plastic injection molding device makes beverage containers or at other times makes toy parts.

Avoidance of Allocation: System Expansion

 Example: municipal waste is burnt, reducing the amount of waste landfilled but also producing electricity

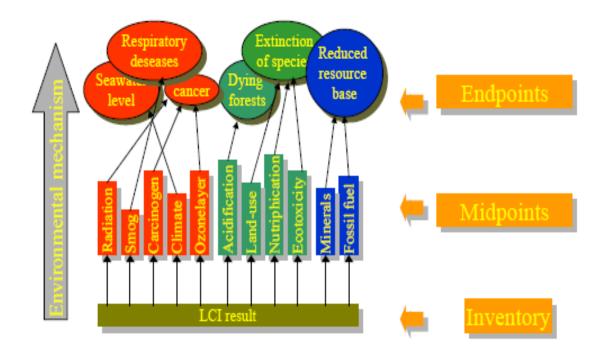
Allocation Issues: Co-products:

- Co-products Allocation: a single process produces multiple products,
 - Burdens can be partitioned by mass flows, volume flows, piece flows, monetary values....
 - Must use process/product knowledge to determine partioning method
 - Example for paper production: paper, Tall Oil, turpentine, electricity...



Allocation Issues: Co-products:

- Example: Papermaking process co-products:
- Paper, 1000 t/day, \$1000/t
- tall oil, 50 t/day, \$2000/t
- Turpentine, 10 t/day, \$5000/t
- Electricity, 1 MWhr/day, \$100/MWhr
- Mass and/or Economic allocation?


Allocation Issues: Recycling

- Recycling Allocation: a virgin product is recycled or re-used in a subsequent life
 - There exists operations that are required by the virgin and the recycled products (shared operations)
 - Example shared operations: virgin raw material production, final disposal
 - Many ways to allocate the burdens of the common operations

Life Cycle Impact Assessment Methodology and Types of Impacts

•

Life Cycle Impact Assessment Methodology and Types of Impacts

Table 4.9 Orientation of Main LCIA Methodologies.

Distance-to-Target	To Midpoint	To Damage or AoP
Critical Volumina	CML (9+)	EPS (5)
Ecoscarcity (15)	EDIP (9)	Eco-indicator 99 (3)
	TRACI (12)	
	ILCD Handbook ^(a) (15)	ILCD Handbook ^(a) (3)
	Midpoint-Damage	
	IMPACT 2002+ (14-4)	
	LIME (11-4)	
	ReCiPe ^(b) (18–3)	
	IMPACT World+(c) (30-3)	

Numbers in parentheses (n) indicate the number of indicator categories.

Life Cycle Impact Assessment Methodology and Types of Impacts

- TRACI, The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts
 - •Global Warming
 - Acidification
 - •Human health: Carcinogenics
 - •Human Health: Non carcinogenics
 - •Respiratory Effects
 - Eutrophication
 - •Ozone Depletion
 - Ecotoxicity

•Smog

•Fossil Fuel Use (limited)

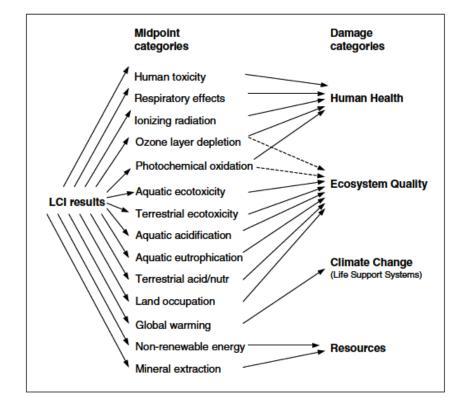


Fig. 1: Overall scheme of the IMPACT 2002+ framework, linking LCI results via the midpoint categories to damage categories, based on Jolliet et al. (2003a)

Data Quality Requirements

- Age of data
- Geographical coverage of data
- Technology data: specific or mix
- Precision: measure of variability
- Completeness: % of flow that is measured
- Representativeness
- Consistency
- Reproducibility
- Sources
- Uncertainty: for instance models

Scope definition: Milk Example

 Design a goal and scope for a milk manufacturer that wants to learn more about the environmental impacts in New England for the production and sales functions of whole milk up to the point of purchase.

– Goal

The product system studied (what processes will be included?)

- The functions of the product(s) studied

- The functional unit

– The system boundary

– Allocation procedures

- LCIA methodology and types of impacts
- Data requirements
- Assumptions
- Limitations

Summary

- Goal
- Comparative assertions
- Scope
- Functional unit
- Reference flow(s)
- System boundary
- Cradle to grave
- Cradle to gate
- Gate to gate
- Cut off criteria
- Allocation
- Coproducts
- Recycling
- System expansion