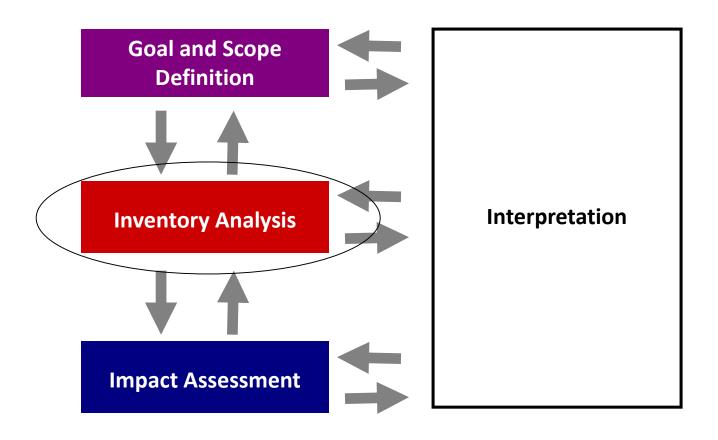

# Environmental Life Cycle Assessment PSE 476/WPS 576 Lecture 6: Life Cycle Inventory




Fall 2016

Richard A. Venditti
Forest Biomaterials
North Carolina State University
Raleigh, NC 27695-8005

Richard\_Venditti@ncsu.edu Go.ncsu.edu/venditti

## Major Parts of a Life Cycle Assessment



## Life Cycle Inventory Analysis(LCI):

- Life cycle inventory analysis: Phase of the life cycle assessment involving the compilation and the quantification of inputs and outputs for a product throughout its life cycle [ISO 14044:2006(E)]
- "an inventory analysis means to construct a flow model of a technical system."
- "the model is an incomplete mass and energy balance over the system"
- "environmentally indifferent flows such as diffuse heat and emissions of water vapour as a combustion product are not modelled" HHGLCA, 2004.

## Life Cycle Inventory Analysis(LCI):

- Three major activities:
  - Construction of the flowsheet
  - Data collection and documentation
  - Calculation of the environmental loads in terms of the functional unit (i.e., the reference flow)
    - Resource use
    - Pollutant emissions

#### Construction of the flowsheet

- Should have all of the processes as in accordance with the Goal and Scope section
- Should show the system boundary
- Should clearly show significant interchanges between processes
- IF the entire system is extremely complicated then two flowsheets are suggested:
  - A simplified flowsheet showing the major life cycle "lumped" parts of the system, suitable for communicating the major concepts of the system
  - A detailed flowsheet that provides finer documentation of the system
     HHGLCA, 2004.

#### Construction of the flowsheet

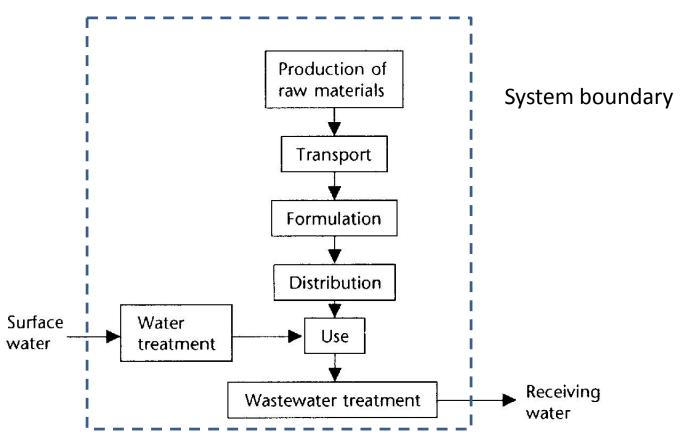
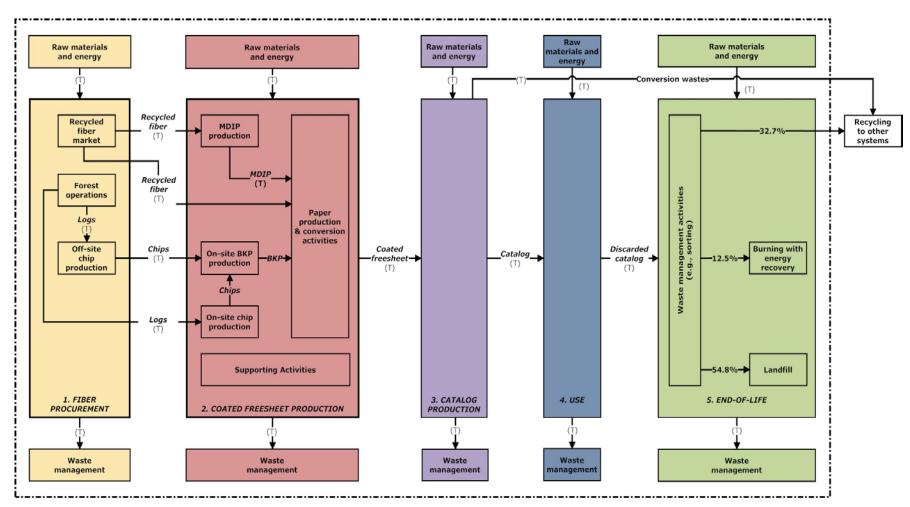
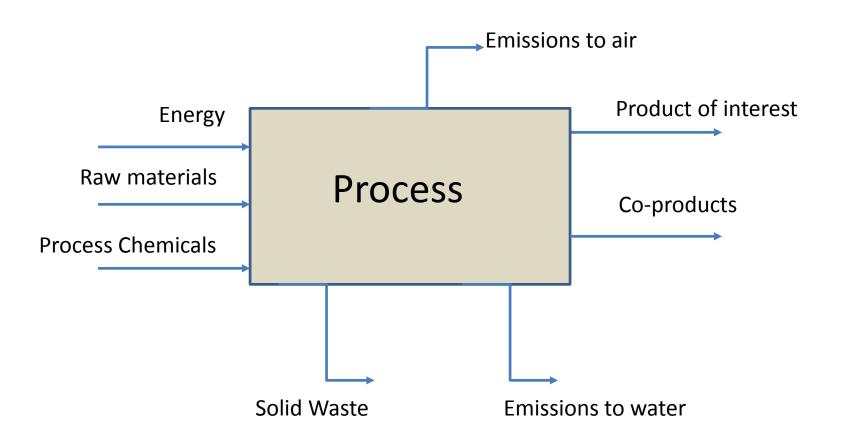



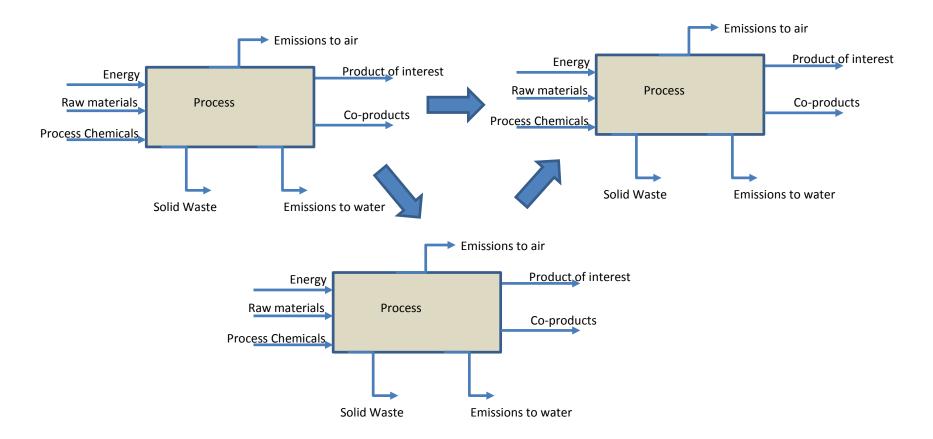

Figure 3.1 General and initial flowchart showing the life cycle of laundry detergents.

#### Construction of the flowsheet




System boundary

#### **Data Collection**


- One of the most time consuming activities in a LCA
- Garbage in, garbage out
- Main data:
  - Input flows of raw materials and energy
  - Other "inputs" such as land use
  - Product output flows
  - Emissions to air, water and land and other environmental impacts (eg., noise)
  - Data to describe processes
    - Example: production efficiencies, equipment, useful lifetimes of products, travel distances...
- Should also have data to guide allocation

#### **Data Collection**

For each process in the flowsheet:



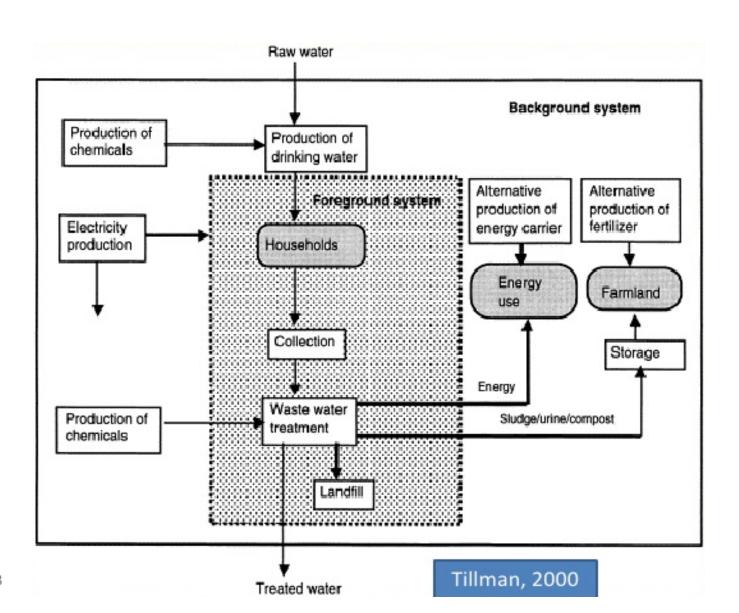
#### **Data Collection**



Large solid arrows signify *link flows* between processes, could be any type of flow. Link flows leave one process and enter another process.

#### **Data Sources**

- Direct measurements
- Literature
- Internet
- Life cycle inventory databases
- Interviews




#### **Data Sources**

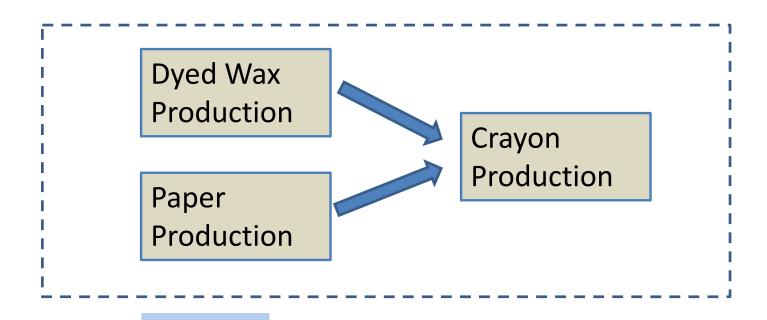
- Foreground system: processes that actions can be directly taken with respect to the results of the LCA, direct measurements can often be taken
- Background system: processes that actions can not be directly taken wrt the results of the LCA, often, external secondary data used
- Primary Data: direct measurement/description of variables
- Secondary Data: data sources from published or unpublished data articles, reports or studies
- Assumptions: used when primary or secondary data is not available.

#### Foreground and background data:

Municipality study on waste water treatment



### What type of data are these?


- A food factory collects the energy usage on their food extrusion process.
- The emissions from the electricity generation process for the electricity that the food factory uses.
- The food factory finds from an internet source that 40% of food in the US gets uneaten. \*
- The extrusion equipment will run at the same efficiency for the next 20 years.
- The emissions of the trucks that transport the food to the distributors.

Calculation of all flows relative to the Functional Unit (reference flows)

- 1. Have a good flowsheet and collect data.
- 2. Normalize data for each process, scale each flow to a product or input of the process.
- 3. Calculate the flows that link the processes together, **link flows**. These flows should be based on the "reference flow(s)" that are determined to fulfill the functional unit.
- 4. Calculate the flows that pass the system boundary. These flows should be based on the "reference flow(s)" that are determined to fulfill the functional unit. Make sure to identify the **elementary flows** 
  - \* Elementary flows are flows from/to the environment not previously/further modified by man.
- 5. Sum up the elementary flows (raw resource use and emissions to the environment) for the whole system
- 6. Document the calculations.

#### LCI: Calculation Procedure Example:

- It is of interest to do a partial life cycle inventory analysis on crayons (major raw materials, CO2 process emissions from burning heating oils, wastes and electricity use).
- Goal: find hot spots amongst paper production, wax production and crayon production (waste, CO2, resource use)
- **Scope**: The functional unit of the study is one box of crayons, a set of 20 crayons (also the reference flow, RF)
- Scope: Three manufacturing processes will be in the study and within the system boundary (all others are not within the scope of this study):



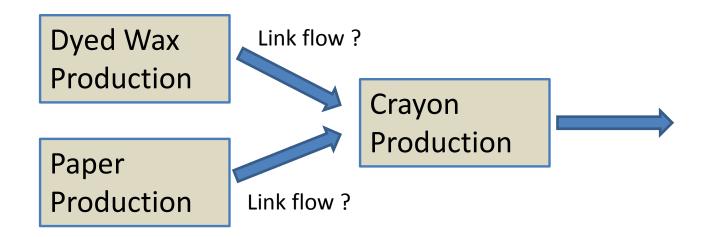
#### Calculation Procedure Example: Data Collection

- Product specification. It is known that 1 crayon has 6 g of wax and 0.5 g of paper wrapper
- Crayon Production. It is reported from the factory that 10,000 crayons can be successfully produced in 24 hours. The electricity consumption is 100 kW-hr for a 24 hr period. CO<sub>2</sub> is emitted at a rate of 10 kg/hr from combustion processes used in the crayon production. There is a defective/disposed stream of crayons that is thrown away; the crayon reject flowrate is 5% of the total successful crayon production flowrate.
- **Dyed Wax Production.** It is reported that the flow of wax produced in the dyeing process is 6,000 grams per hour. Electricity consumption is 20 kW-hr per day. CO<sub>2</sub> is emitted is at a rate of 5 kg/hr from combustion processes. 10% of the feed wax is wasted/disposed in the process.
- Paper Production. 200 metric tonne of usable paper are produced per day. The amount of electricity consumed is 4000 kW-hr per day. The amount of wood consumed per day is 600 metric tonne of wood. CO<sub>2</sub> is emitted at a rate of 12 kg/hr from combustion processes. Waste is produced at 10 metric tonnes per day rate.

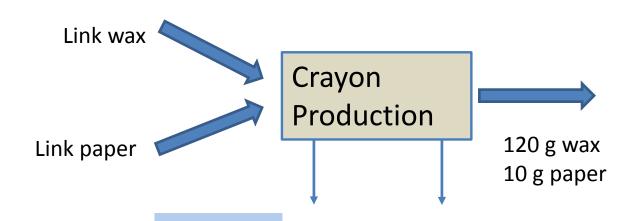
#### Calculation Procedure Example: Normalization

- Crayon Production. It is determined that 10,000 crayons can be successfully wrapped in 24 hours. The electricity consumption is 100 kW-hr for a 24 hr period. CO<sub>2</sub> is emitted at a rate of 10 kg/hr from combustion processes used in the crayon production. There is a defective/disposed stream of crayons that is thrown away; it is 5% of the total successful crayon production.
- Normalize process with respect to one crayon produced:

#### Calculation Procedure Example: Normalization


- Dyed Wax Production. It is reported that the flow of wax produced in the dyeing process is 6,000 grams per hour. Electricity consumption is 20 kW-hr per day. CO<sub>2</sub> is emitted at a rate of 5 kg/hr from combustion processes. 10% of the feed is wasted material that is disposed.
- Normalize process with respect to a gram of wax produced:

#### Calculation Procedure Example: Normalization


- Paper Production. 200 metric tonne of paper are produced per day. The
  amount of electricity consumed is 4000 kW-hr per day. The amount of wood
  consumed per day is 600 metric tonne of wood per day. CO<sub>2</sub> is emitted at a
  rate of 12 kg/hr from combustion processes. Waste is produced at 10 metric
  tonnes per day rate.
- Normalize process with respect to a metric tonne of paper produced:

#### Calculation Procedure: link flows

- Step 2. Calculate the flows that link the processes together.
   These flows should be based on the "reference flow(s)" that are determined to fulfill the functional unit.
- Reference flow based on the functional unit of one box of crayons: 20 crayons, each with 6 g wax, 0.5 g paper



#### Calculation Procedure: link flows



STEP 3: Calculate the flows that pass the system boundary. These flows should ultimately be in terms of the

"reference flow(s)" that are determined to fulfill the functional unit.

#### **Crayon Production:**

STEP 3: Calculate the flows that pass the system boundary. These flows should be based on the "reference flow(s)" that are determined to fulfill the functional unit.

#### **Dyed Wax Production:**

STEP 3: Calculate the flows that pass the system boundary. These flows should be based on the "reference flow(s)" that are determined to fulfill the functional unit.

#### **Paper Production:**

Step 4. Sum up the resource use and emissions to the environment for the whole system

|                          | Paper Prod. | Wax Dyeing | Crayon Prod. | Total |
|--------------------------|-------------|------------|--------------|-------|
| Waste (g/RF)             | .5          | 13.9       | 6.5          | 20.9  |
| Waste % of total         |             |            |              |       |
| CO2 (kg/RF)              |             |            |              |       |
| CO2 % of total           |             |            |              |       |
| Wood (g/RF)              | 31.5        | 0          | 0            | 31.5  |
|                          |             |            |              |       |
| Raw Wax (g/RF)           | 0           | 140        | 0            | 140   |
| Electricity<br>(kWhr/RF) |             |            |              |       |
| Elect % of total         |             |            |              |       |

(RF= reference flow, 20 crayons, containing 120 g dyed wax and 10 g paper)

Step 5. Document the calculations (for others). Show example calculations and data used. Explain boundary, allocation, and calculation methods.

What were the hotspots for waste, CO2 and electricity?

## Summary

- Life cycle inventory (LCI) analysis
- 3 Major Activities in LCI
  - Flowsheet, collect data, calculations
- System Boundary
- Foreground data
- Background data
- Primary data
- Secondary data
- Assumptions
- Functional unit
- Reference flows
- Elementary flows
- Normalized Process Data
- Link flows
- Hot spots