Introduction to Global Warming and Carbon Footprinting

Dr. Richard Venditti Forest Biomaterials North Carolina State University

Source if no other reference appears:

This Summary for Policymakers should be cited as:

IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.]

Global Warming Changes

CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN HEMISPHERE SNOW COVER

Figure SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for the period 1961–1990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). (FAQ 3.1, Figure 1, Figure 4.2, Figure 5.13)

Global Carbon Cycle

• The velocity of climate change may have more impact than the absolute value of the changes

Changing temperature in California.

SR Loarie et al. Nature 462, 1052-1055 (2009) doi:10.1038/nature08649

nature

Global Warming Predictions

Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the ±1 standard deviation range of individual model annual averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right indicate the best estimate (solid line within each bar) and the **likely** range assessed for the six SRES marker scenarios. The assessment of the best estimate and **likely** ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy of independent models and observational constraints. {Figures 10.4 and 10.29}

Changes in GHGs

- Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750
- Now far exceed pre-industrial values determined from ice cores spanning many thousands of years
- The global increases in
 - carbon dioxide concentration are due primarily to fossil fuel use and land use change,
 - Methane and nitrous oxide are primarily due to agriculture.

Figure SPM.1. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols with different colours for different studies) and atmospheric samples (red lines). The corresponding radiative forcings are shown on the right hand axes of the large panels. [Figure 6.4]

Global Carbon Cycle

Fig. 1 Estimates of the global pools and fluxes between them.^{1,4,5,7,152}

Global Warming

Figure 2. Ice core record from Vostok, Antarctica, showing the nearsimultaneous rise and fall of Antarctic temperature and CO2 levels through the last 350,00 years, spanning three ice age cycles. However, there is a lag of several centuries between the time the temperature increases and when the CO2 starts to increase. Image credit: <u>Siegenthalter et al., 2005, Science</u>

Global Warming Potential (GWP)

- relative measure of how much heat a <u>greenhouse gas</u> traps in the atmosphere.
- compares the amount of heat trapped by a certain mass of the <u>gas</u> in question to the amount of heat trapped by a similar mass of <u>carbon dioxide</u>.
- commonly determined over a span of 20, 100 or 500 years.
- GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1).

Radiative Forcing Capacity (RF) and GWP

- RF = the amount of energy per unit area, per unit time, absorbed by the greenhouse gas, that would otherwise be lost to space
- GWP is the ratio of the timeintegrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas
- where *TH* is the time horizon,
- *RFi* is the global mean RF of
- component *i*,
- *ai* is the RF per unit mass increase in atmospheric abundance of component *i* (radiative effi ciency),
- [*Ci*(*t*)] is the time-dependent abundance of *i*,
- and the corresponding quantities
- for the reference gas (r) in the denominator.

$$GWP_{i} \equiv \frac{\int_{0}^{TH} RF_{i}(t) dt}{\int_{0}^{TH} RF_{r}(t) dt} = \frac{\int_{0}^{TH} a_{i} \cdot [C_{i}(t)] dt}{\int_{0}^{TH} a_{r} \cdot [C_{r}(t)] dt}$$

Global Warming Potential Values

Table 2.14. Lifetimes, radiative efficiencies and direct (except for CH₄) GWPs relative to CO₂. For ozone-depleting substances and their replacements, data are taken from IPCC/TEAP (2005) unless otherwise indicated.

Industrial Designation	trial Designation Radiative		Radiative	Global Warming Potential for Given Time Horizon					
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr		
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ^{−5}	1	1	1	1		
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6		
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153		
Substances controlled b	y the Montreal Protocol								
CFC-11	CCl₃F	45	0.25	3,800	6,730	4,750	1,620		
CFC-12	CCl ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200		
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400		
CFC-113	CCl ₂ FCCIF ₂	85	0.3	4,800	6,540	6,130	2,700		
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,730		
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990		
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760		
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575		
Halon-2402	CBrF ₂ CBrF ₂	20	0.33		3,680	1,640	503		
Carbon tetrachloride	CCl ₄	26	0.13	1,400	2,700	1,400	435		
Methyl bromide	CH ₃ Br	0.7	0.01		17	5	1		
Methyl chloroform	CH ₃ CCI ₃	5	0.06		506	146	45		
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	549		
HCFC-123	CHCl ₂ CF ₃	1.3	0.14	90	273	77	24		
HCFC-124	CHCIFCF ₃	5.8	0.22	470	2,070	609	185		
HCFC-141b	CH ₃ CCl ₂ F	9.3	0.14		2,250	725	220		
HCFC-142b	CH ₃ CCIF ₂	17.9	0.2	1,800	5,490	2,310	705		
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	37		
HCFC-225cb	CHCIFCF2CCIF2	5.8	0.32		2,030	595	181		
Hydrofluorocarbons									
HFC-23	CHF ₃	270	0.19	11,700	12,000	14,800	12,200		
HFC-32	CH ₂ F ₂	4.9	0.11	650	2,330	675	205		
HEC 125	CHE CE	20	0.02	2 800	6 350	3 500	1 100		

Radiative Forcing

- rate of energy change per unit area of the globe as measured at the top of the atmosphere
- expressed in units of Watts per square metre

RADIATIVE FORCING COMPONENTS

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in this figure due to their episodic nature. The range for linear contrails does not include other possible effects of aviation on cloudiness. {2.9, Figure 2.20}

Carbon Footprint: Impact Assessment Method

- Partial life cycle analysis
- **Historicially**: the total set of greenhouse gas (GHG) emissions caused by an organization, event, product or person (UK Carbon Trust, 2009)
- Practically: A measure of the total amount of carbon dioxide (CO₂) and methane (CH₄) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent (CO₂e) using the relevant 100-year global warming potential (GWP100) (Wright etal, Carbon Mgmt, 2011)

Carbon Footprint: Impact Assessment Method

• IPCC is the leading authority in evaluating the science behind GWP

Revision Year	CO ₂ equivalents for CH ₄	CO ₂ equivalents for N ₂ O
1996	21	310
2001	23	296
2006	25	298

Carbon Footprint: A Material Balance of GHG's

Carbon footprint = Emissions- Absorption (kg CO2 equivalents)

Carbon Footprint: Impact Assessment Method

- Typically, a carbon footprint does not consider biogenic (from living processes) carbon nor does it consider CO2 emissions from the burning or decay of the biogenic material (they balance each other)
- Biogenic material decay/burning that produces methane or N2O must be considered

Carbon Footprint: Impact Assessment Method

- Non renewable resources (coal, oil) are considered since they have been formed over very long time scales and are not being formed over time scales of interest
- Materials, transportation, energy often have associated with them carbon emissions
- Long term storage of carbon away from the atmosphere is considered a negative C footprint contribution
- When one product with a lower C footprint replaces another with larger C footprint, an avoided C input to the atmosphere is claimed, a negative C footprint contribution

Carbon Footprint: CO2 list.org

CO ₂ is not caused l	by others, it is	s caused by	our choices: Heating & c	ooling; Buyir	may surprise you. ng products; Red meat versus chicken and grain; Cars and
CO2LIST.ORG	KILOS OF CO2	POUNDS OF CO ₂	UNITS OF MEASURE FOR	EACH ITEM	What is the answer? Solutions are discussed at http://Your.CO2List.org
Bold shows some interesting items	(includes ef greenhou	fect of other ise gases)	(We and most others measure CO ₂ by weight. Its size varies, so it can't be measured in volume. For other items we pick appropriate units, shown below.)		Data from US, except when the following symbols appear: ‡ Data are from UK † Data are from Australia France has data (in English) for many items, not yet incorporated here. Contact us. 16 March 2012
	CO	, POUN	DS RELEASED W	VHILE M	LAKING PRODUCTS
l - FOOD	KILOS OF CO2	POUNDS OF CO2		Pounds of CO ₂ per 500 Calories (this is 1/4 of a daily 2,000- Calorie diet)	Sweden labels individual food items
Red meat	22	22		12	92% from production of animals & their feed, including N2O & methane. Remainder is transport of inputs & meat, and selling. (interesting article by former Texas Ag Commissioner http://jimhightower.com/node/6901)
Chicken, fish, eggs	6	6]	4	81% from production of feed & meat
Dairy	4	4		6	91% from production of feed & animals
Cereals, carbohydrates	3	3	Pounds CO ₂ per pound of product, or Kilos of CO2 per 1.5 75% from prod		75% from production of crops
Fruit, vegetables	2	2	kilo of product	4	74% from production of crops
Oils, sweets, condiments	2	2		0.5	74% from production of crops
Balanced Diet				1.7	USDA Food Guide: 53% carbohydrate, 29% oils, 18% protein (here protein is chicken, fish, eggs)
					http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2005/2005
	Source: Weber Farm products	& Matthews 2 (food, cloth, le	2008 "Food-Miles and the Rela eather, biofuels) release greenho	tive Climate ouse gases from	http://pubs.acs.org/doi/full/10.1021/es702969f http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf
	and Crutzen et	al. 2008 "N ₂ O	Release")		http://www.atmos-chem-phys.net/8/389/2008/acp-8-389-2008.html
	(d) methane (C	(H_4) created in Bioficels, part	animal stomachs and intestines	s, (e) and 5 on	http://icsu.org/
Potato chips‡	2	2	Contry chapters o on fallo use	and J Uli	Mostly from growing crops: N ₂ O from nitrogen-fixing bacteria, fuel
Orange juice	0.9-1.4	0.9-1.4	pounds CO ₂ per pound of pro	oduct	The figures in the section above are larger, and come from a much more complete methodology.
Bottled smoothiet	1.1	1.1	kilos CO2 per kilo of product		
Organic new potato‡	0.29	0.29			
Potato, not organic‡	0.24	0.24			
	Sources: Carbo and Report CT	m Trust, a UK. C744.	nonprofit, has a summary		http://www.carbon-label.com/individuals/product.html http://www.carbontrust.co.uk/Publicsites/cScape.CT.PublicationsOrd
	Orange juice is	from a Pepsic	o study reported in the NY Tim	es.	http://www.nytimes.com/2009/01/22/business/22pepsi.html/

18

Carbon Footprint:

Japan's Central Research Institute of the Electric Power Industry's

Carbon Footprint Example: Coated Paper (Catalog)

Data and Graphs from NCASI LCA P&W Grades, 2010 Software used from NCASI, FEFPRO

NCASI LCA NA P&W Grades, 2010

Life Cycle Analysis of Paper: Carbon Footprint Results

Go.ncsu.edu/venditti (downloads)

Basic Steps of the Carbon Footprint

- Define the footprint boundary
- Define the scope
- Define the Basis of Calculation
- Begin to complete the Life Cycle Inventory
 - Forest Carbon Changes
 - Wood and Fiber
 - Fuels from Mfg
 - Other Materials
 - Electricity and Steam
 - Mfg waste
 - Product Transport
 - End of Life
- Evaluate Results, Interpret, Report

Define the footprint boundary

- Cradle to Grave of catalog paper, coated free sheet
- 100 years

 11. AVOIDED EMISSIONS AND OTHERS

 Benefits from sold electricity
 Avoided emissions: landfill methane capture and burning for energy
 Avoided emissions: product burning for energy
 Manufacturing biomass CO₂ emissions

Define the scope

- 100 years
- Scope 1: all direct GHG emissions from owned production;
- Scope 2: indirect GHG emissions from consumption of purchased electricity, heat or steam; and
- Scope 3: indirect GHG emission from systems such as extraction and production of purchased materials and fuels, transportation in *non-owned* vehicles, or production facilities operated by parties other than the user.

Define the Basis of Calculation

 Basis of Calculation (BoC) is the metric upon which all of the data input, calculations, and result output are based. For example, a BoC of 1000 kg of product (one metric tonne) means that data input such as quantity of raw material consumed is entered per 1000 kg of production (e.g., a BoC of 1000 kg and log input of 2000 kg means that 2 tonnes of logs are consumed in the production of 1 tonne of product).

Name of this footprint	Coated Freesheet NCASI Number of Uses Cradle to Grave
Product Name	Coated Freesheet
Product Type	coated woodfree
Footprint Boundaries	Cradle to Grave only in this version
Description of a single product	1 mdst (5% water)
Basis of Calculation (BoC)	1 machine-dry short ton (5% water)
Basis of calculation (BoC) expressed as mass (dry kg)	861.82556

Life Cycle Inventory: Forest Carbon Changes

- Must understand if the land that is being used to provide the amount of wood needed to make paper is being changed such that the net carbon stock on the land for 100 years is changing over many harvests
- Not commonly known, but can be important
- In developed countries, significant proportion is harvested sustainably and many certified

Forest name	Method of determining	Change i stocks (kg d	n carbon carbon/BoC)
	carbon stock changes	Default value	Selected value
Generic Forest	Constant Stock	0	0.00

Life Cycle Inventory: Wood and Fiber

- Wood and Fiber inputs into manufacturing
- Northern Hardwood chips example, but most cases have multiple inputs

				Proposed defaults	From ow operation	ned ons	From nor owned operatior	า- เร
	Quantity (kg/	BoC, dr	y basis)	No default			261	
Moisture	content as received (fractio	n betwe a	een zero and one)	No default			0.5	
Em	viscions for this fibor source		Scope 1	0.130			0	
L111			Scope 2	0.090			0	
	(kg CO2 eq./kg dry)		Scope 3	0.010			0.230	
				Wet tonne	es 0		0.522	
			Total s	shipped tonne	es	0.52	22	
		-	k	g CO ₂ eq./B	оС			
			Scope 1	Scope 2	Scope 3			
	Emissions for this fiber	source	0	0	50.028364			
	Truck,	owned	0		0			
	Truck, non	-owned			4.394349			
	Rail,	owned	0		0			
	Rail, non-	-owned			0.1841231			
	Water inland,	owned	0		0			
	Water inland, non-	-owned			0			
	Water ocean,	owned	0		0			
	Water ocean, non-	-owned			0			
		Total	0	0	54.606836			
	Transpo	ort only	0		4.5784721			

Life Cycle Inventory: Fuels Consumed

• Coal, example

				Propose	d defaults	Bui ov ope	rned in wned rations	Burne non-ov operat	d in vned ions
	Quantity (GJ HHV/E	BoC, dry ba	asis)	No a	lefault	ļ	5.56		
Moisture conten	t as received (fraction	between and	zero one)	0	.1		0.1		
		Combus	stion	90	.32	g	0.32	N/A	۹
E	Emissions for this fuel (kg CO ₂ eq./GJ HHV)	combus	Pre- stion	5.3	382	5	5.382	N/A	Ą
		-	Total	95.	702	9	5.702		
			I	Tran	sported tons	0.19	6744515	0	
				Total tran	sported tons		0.1967	44515	
					kg CO ₂ eq./	BoC			
		_	S	cope 1	Scope 2		Scop	e 3	
	Fuel-related e	missions	42	25.8628			25.376	366	
	Truc	k, owned		0			0		
	Truck, no	on-owned					0.0453	493	
	Ra	il, owned		0			0		
	Rail, no	on-owned					2.3267	772	
	Water inlan	d, owned		0			0		
	Water inland, no	on-owned					0.0545	282	
	Water ocea	n, owned		0			0		
	Water ocean, no	on-owned					0		
		Total	42	25.8628			27.80	302	
	Trans	oort only		0			2.4266	546	

Life Cycle Inventory: Fuels Consumed

• Black liquor, organic material byproduct of making paper

			Pro	posed defau	Its	Burneo owne operati	d in ed ons	Burned non-owr operatic	in 1ed ons
Quar	ntity (GJ HHV/E	BoC, dry basis)		No default		9.1		-	
Moisture content as rec	ceived (fraction	between zero and one)		0.35		0.35	5		
		Combustion		0.637		0.63	7	N/A	
Emissic (kg CO	ons for this fuel 2 eq./GJ HHV)	Pre- combustion		0		0		N/A	
	. ,	Total		0.637		0.63	7		
				Transported	l tons	1		0	
			Tot	al transported	l tons		1	•	
			_	I	kg CC) ₂ eq./Bo	С		
				Scope 1	Sc	ope 2	Sc	cope 3	
	Fue	el-related emiss	ions	4.830908				0	
		Truck, ow	vned	0				0	
		Truck, non-ow	vned					0	
		Rail, ow	vned	0				0	
		Rail, non-ow	vned					0	
	V	Vater inland, ow	vned	0				0	
	Water	inland, non-ow	vned					0	
	V	later ocean, ow	vned	0				0	
	Water	ocean, non-ow	vned					0	
		7	Total	4.830908				0	
		Transport	only	0				0	

Life Cycle Inventory: Other Materials

• Example Latex coating material

	Proposed defaults	User entry
Quantity (kg/BoC, dry basis)	25.85	25.85
Moisture content as received (fraction between zero and one)	0	0
Upstream emissions for this raw material (kg CO ₂ eq./kg dry)	2.628	2.628
Total received tonnes (wet)	0	.02585

	kg CO₂ eq./BoC					
	Scope 1	Scope 2	Scope 3			
Upstream Emissions			57.60986			
Truck, owned	0		0			
Truck, non-owned			0.533979			
Rail, owned	0		0			
Rail, non-owned			0.079094			
Water inland, owned	0		0			
Water inland, non-owned			0			
Water ocean, owned	0		0			
Water ocean, non-owned			0			
Total	0		58.22294			
Transport only	0		0.613073			

Life Cycle Inventory: Electricity and Steam

• Need to know quantities and location of electricity

	Reg	jion supplying the	Default emission factor (kg CO ₂ eq./MWh)		Selec (k	ted emission g CO ₂ eq./MW	factor /h)			
		electricity	Scope 2	Sc	ope 3	Scope 2	Scope 3	Used for		
0.0183		Alabama	711.0	1	8.2	711.0000	18.2000	Combined operations		
0.0518		Kentucky	1045.4	2	25.3	1045.4000	25.3000	Combined operations		
0.0157		Maryland	711.5	18.2		711.5000	18.2000	Combined operations		
0.0306		Maine	393.6	11.5		11.5		393.6000	11.5000	Combined operations
0.0515		Michigan	738.2	1	8.8	738.2000	18.8000	Combined operations		
			kg CO ₂ eq./E	BoC						
		Scope 1	Scope 2		Sc	cope 3				
			11.0339657	73	0.28	2444692				
			45.922253	96	1.11	1376531				
			9.47295550	02	0.24	2315938				
			10.213802	52	0.29	8421568				
			32.2397904	45	0.82	1062125				

Life Cycle Inventory: Electricity and Steam

• For steam used a proxy:

Quantity (GJ/BoC)	Steam supplier/Source of emission factor	Default emission factor (kg CO ₂ eq./MGJ) Scope3	Selected emission factor (kg CO ₂ eq./GJ) Scope 3
0.0434	used natural gas EF	No default	63.324

Life Cycle Inventory: Manufacturing Wastes

• On site landfill that decays

Results

	Proposed	Selected
	default	value
Quantity of manufacturing wastes placed in industry landfills (dry kg/BoC)	43.09	83.50
Fraction of carbon in wastes	0.275	0.275
Fraction of carbon in wastes permanently stored	0.50	0.50
Fraction of wastes from owned operations	No default	1.00

	Scope 1	Scope 3
Mass of methane		
emitted from mill		
landfills (kg CO_2		
eq./BoC)	172.21875	0
Mass of carbon		
permanently stored in		
mill landfills (kg CO_2		
eq./BoC)	42.097	91667
Scope 1 Biogenic CO_2		
emitted (kg CO_2		
eq./BoC)	23.1538542	

Life Cycle Inventory: Product Transport

• All transport steps involved, default emmission data used

Product	# T23 Code 293 LISDOT 99 04 and LISEPA 06 (printer to customer) 91%					
descriptor:	# 123 Code 293 USDOT 99,04 and USEPA 06 (printer to customer) 91%					
Product	Advertising material, commercial or trade catalogues, and similar printed					
transported:	products					
Quantity (dry kg/BoC):	784.26					
Moisture content:	0.08					

	Proposed defaults		Owned trans	portation	Non-owned transportation	
Mode	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance , km
Truck	1	403.9			1	403.9
Rail	0	0				
Freshwater (inland) shipping	0	0				
Marine (ocean) shipping	0	0				

	kg CO₂ eq./BoC			
	Scope 1	Scope 2	Scope 3	
Truck	0		32.19272	
Rail	0		0	
Marine (ocean) shipping	0		0	
Inland (freshwater) shipping	0		0	
Total	0		32.19272	

Life Cycle Inventory: Product Transport

• All transport steps involved, default emmission data used

Transportation mode	(kg CO2 / km*tonne)				
mansponation mode	Combustion	Precombustion	Total		
Truck	0.0805	0.013	0.0935		
Rail	0.0191	0.0031	0.0222		
Marine (ocean)	0.0163	0.0022	0.0185		
Inland (freshwater)	0.0288	0.0046	0.0334		
Small truck (EOL)			1.26		

Life Cycle Inventory: End of Life: Carbon in Products

- How much carbon exists in products. Needed for end of life and carbon storage in products.
- Half life, number of years for the existing paper in use to half
- C permanently stored (in landfills)

Product	Carbon content (fraction)	Half-life (years)	Carbon permanently stored (fraction)
bleached kraft board	0.50	2.54	0.12
bleached kraft paper (packaging & industrial)	0.48	2.54	0.61
coated mechanical	0.50	2.54	0.85
coated woodfree	0.50	2.54	0.12
average containerboard	0.50	2.54	0.55
newsprint	0.46	2.54	0.85
recycled boxboard	0.50	2.54	0.55
recycled corrugating medium	0.50	2.54	0.55

Life Cycle Inventory: End of Life

- Define the amount recycled
- Define the amount burned for energy and landfilled
- Built in data about landfill emissions

The final product is probably used and disposed of in:				U.S.	
Fractions				Transport di	stances, km
Disposition	Proposed	User		Proposed	User Selection
	defaults	Selection		defaults	USEI SEIECLIOII
Recycling	0.4210	0.388		32.18	32.18
Landfill	0.4696	0.498		32.18	32.18
Burning w/ energy recovery	0.1094	0.114		32.18	32.18

Burning assumptions:

- GHG emissions are mainly N₂O.

Landfill assumptions:

- Landfills are assumed to be completely anaerobic.

50%

10%

- Fraction of gas transformed to methane:
- Fraction of methane oxidized to CO₂ in landfill covers

Life Cycle Inventory: End of Life

Mass of product remaining in use after 100	31 58112712
years (kg/BoC)	01.00112712
Mass product landfilled (kg product/BoC)	413.46172757
Mass carbon landfilled (kg C/BoC)	133.54813801
Mass carbon permanently stored (kg C/BoC)	16.02577656
Mass if carbon transformed to gas (kg C/BoC)	117.52236145
Mass of carbon transformed into methane (kg C/BoC)	58.76118072
Mass of carbon in methane not oxidized in landfill covers (kg C/BoC)	52.88506265
Mass of carbon transformed into CO ₂ (kg C/BoC)	5.87611807
Mass of carbon in methane burned for energy recovery (kg C/BoC)	23.26942757
Mass of methane emitted (kg CH ₄ /BoC)	39.48751345
Landfill methane (kg CO ₂ eq./BoC)	987.1878361
Burning GHGs (kg CO ₂ eq./BoC)	0.946478653
Transport GHGs (kg CO ₂ eq./BoC)	69.88853723
Total EOL (scope 3) GHG emissions (kg CO ₂ eq./BoC)	1058.022852
Carbon storage (kg CO ₂ eq./BoC)	58.76118072

Life Cycle Inventory: Analysis

- Check for completeness, consistency, errors.....
- Interpret....

Basis of calculation (BoC, kg)	861 82556			
	Total	Scope 1	Scope 2	Scope 3
Total emissions, including transport (kg CO	, otai			
eq./BoC):	3100	793.5	188.6	2118
Of which, total transport (includes all transport				
components):	161.2	0	0	161.2
Emissions from fuel used in manufacturing				
(including transport)	839.2	647.5	0	191.7
Emissions from purchased electricity and steam	383.5	0	188.6	194.9
Emissions from wood and fiber production				
(including transport)	312.9	0	0	312.9
Emissions from other raw materials (including				
transport)	298.1	0	0	298.1
Emissions from manufacturing wastes	146	146		0
Emissions from product transport	62.53	0	0	62.53
Emissions from end of life (including transport)	1058			1058
Total carbon storage changes (kg CO ₂ eq./BoC)	138.3			
Changes in forest carbon (kg CO ₂ eq./BoC)	0	Me	thod used to	Weighted
		estima	te amount of	avg first
Carbon in products in use (kg CO_2 eq./BoC)	37.4	pro	oduct in use:	order
Carbon in landfills from products at end of life	FO FO			
(kg CO ₂ eq./BoC)	58.76			
Carbon in mill landfills from manufacturing				
wastes (kg CO ₂ eq./BoC)	42.1			

Life Cycle Inventory: Analysis

- Check for completeness, consistency, errors.....
- Interpret....

Life Cycle Analysis of Paper: Carbon Footprint Results

Go.ncsu.edu/venditti (downloads)

Life Cycle Analysis of Paper: Catalog System Boundary

4NCASI LCA NA P&W Grades, 2010

Full Life Cycle Analysis of Paper: Carbon Footprint Results

Table ES-6. LCIA Results – Catalog, Coated Freesheet

Impact category	Unit	Total (unit/ catalog)	1- Fiber procurement	2- Coated freesheet production	3- Production of catalogs	4- Transport and use	5- End- of-life	Storage in use and landfill
Global Warming (GW)	kg CO ₂ eq.	4.89E-01	5.4%	43.6%	15.7%	1.2%	37.7%	-3.4%
Acidification (AC)	H⁺ moles eq.	1.67E-01	7.6%	67.4%	21.1%	1.1%	2.9%	
Respiratory effects (RES)	kg PM _{2.5} eq.	6.52E-04	3.5%	77.9%	15.6%	0.3%	2.6%	
Eutrophication (EU)	kg N eq.	8.85E-04	1.9%	19.0%	6.2%	0.2%	72.8%	N/A
Ozone depletion (OD)	kg CFC- 11 eq.	2.63E-08	6%	53%	31%	4%	7%	
Smog (SM)	kg NOx eq.	2.10E-03	7.7%	36.4%	48.7%	1.8%	5.3%	
Fossil fuel depletion (FF)	MJ surplus	3.94E-01	9.3%	52.4%	29.8%	2.6%	5.9%	

¹¹ Results obtained using the *ecoinvent* database only (see Section 9.3.1.2 for more details)

National Council for Air and Stream Improvement, Inc. (NCASI). 2010. *Life cycle assessment of North American printing and writing paper products*. Unpublished Report. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

Summary

- GHG concentrations are rising abruptly
- From a scientific viewpoint these are expected to increase radiative forcing and global warming
- A carbon footprint of a service is a method to gauge the net GWP
 - Includes emissions
 - Includes storage
- The carbon footprint is a partial life cycle analysis and as should not be considered in isolation
 - Often there is a tradeoff between carbon footprint and other environmental impacts that should be considered