
Environmental Life Cycle Assessment PSE 476/WPS 576/WPS 595-005

Lecture 12: Global Warming and Carbon Footprinting

Richard Venditti

Fall 2012

Richard A. Venditti
Forest Biomaterials
North Carolina State University
Raleigh, NC 27695-8005

Richard_Venditti@ncsu.edu Go.ncsu.edu/venditti

Introduction to Global Warming and Carbon Footprinting

Dr. Richard Venditti
Forest Biomaterials
North Carolina State University

Source if no other reference appears:

Global Warming Changes

CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN HEMISPHERE SNOW COVER

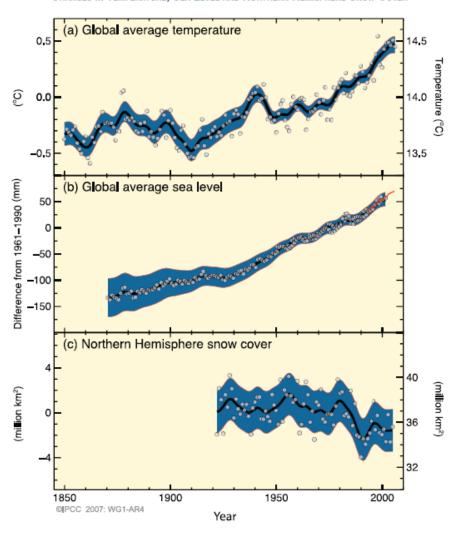
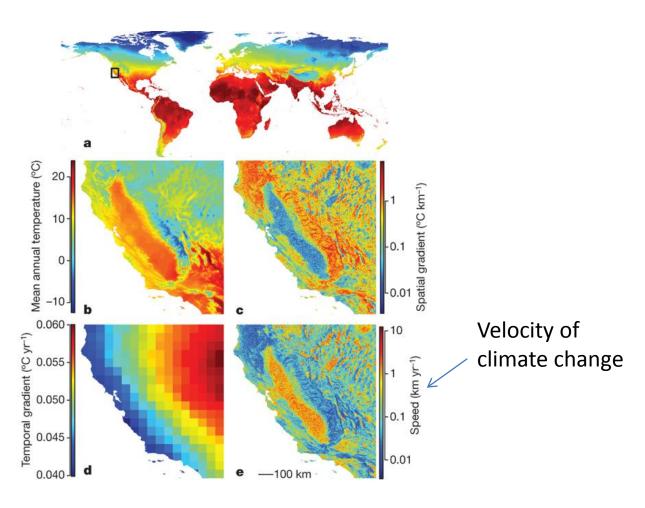



Figure SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for the period 1961–1990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). [FAQ 3.1, Figure 1, Figure 4.2, Figure 5.13]

Global Carbon Cycle

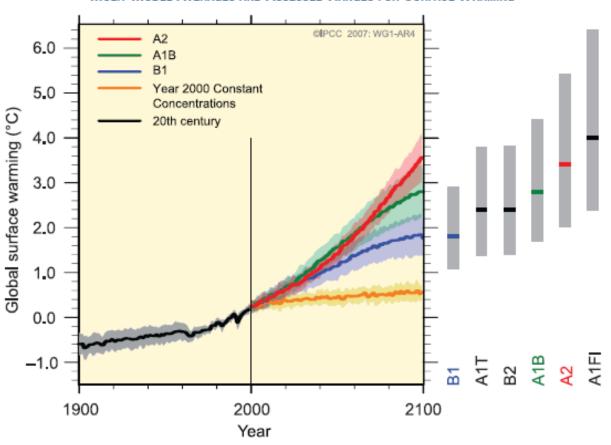
 The velocity of climate change may have more impact than the absolute value of the changes

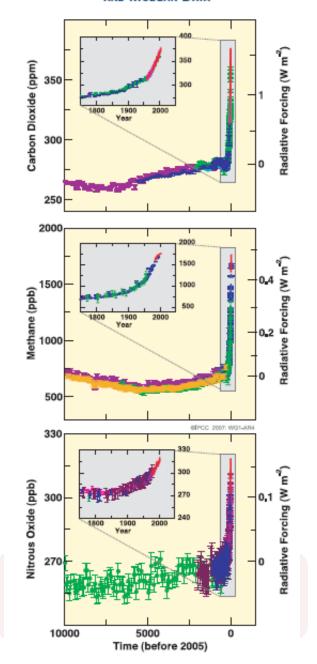
Changing temperature in California.

SR Loarie et al. Nature 462, 1052-1055 (2009) doi:10.1038/nature08649

Global Warming Predictions

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING




Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the ±1 standard deviation range of individual model annual averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy of independent models and observational constraints. {Figures 10.4 and 10.29}

Changes in GHGs

- Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750
- Now far exceed pre-industrial values determined from ice cores spanning many thousands of years
- The global increases in
 - carbon dioxide concentration are due primarily to fossil fuel use and land use change,
 - Methane and nitrous oxide are primarily due to agriculture.

Figure SPM.1. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols with different colours for different studies) and atmospheric samples (red lines). The corresponding radiative forcings are shown on the right hand axes of the large panels. (Figure 6.4)

CHANGES IN GREENHOUSE GASES FROM ICE CORE AND MODERN DATA

Global Carbon Cycle

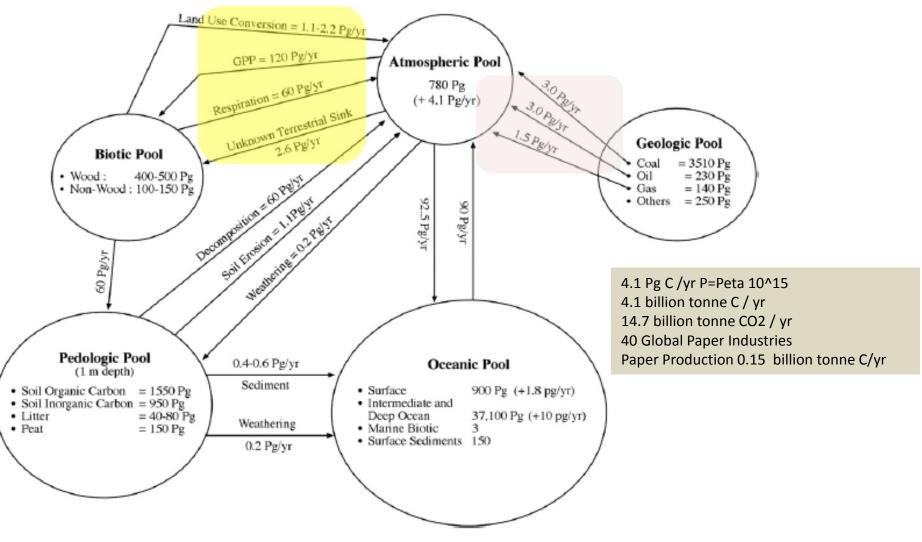
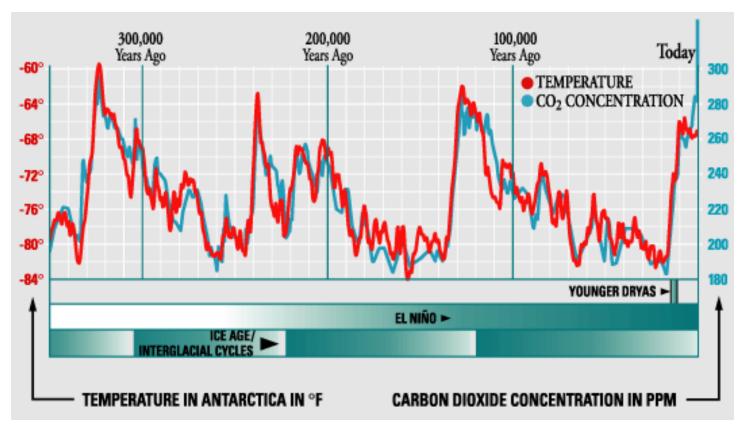



Fig. 1 Estimates of the global pools and fluxes between them. 1,4,5,7,152

Global Warming

Figure 2. Ice core record from Vostok, Antarctica, showing the near-simultaneous rise and fall of Antarctic temperature and CO2 levels through the last 350,00 years, spanning three ice age cycles. However, there is a lag of several centuries between the time the temperature increases and when the CO2 starts to increase. Image credit: <u>Siegenthalter et al., 2005, Science</u>

Global Warming Potential (GWP)

- relative measure of how much heat a greenhouse gas traps in the atmosphere.
- compares the amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of carbon dioxide.
- commonly determined over a span of 20, 100 or 500 years.
- GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1).

Radiative Forcing Capacity (RF) and GWP

- RF = the amount of energy per unit area, per unit time, absorbed by the greenhouse gas, that would otherwise be lost to space
- GWP is the ratio of the timeintegrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas
- where *TH* is the time horizon,
- RFi is the global mean RF of
- component *i*,
- ai is the RF per unit mass increase in atmospheric abundance of component i (radiative effi ciency),
- [Ci(t)] is the time-dependent abundance of i,
- and the corresponding quantities
- for the reference gas (r) in the denominator.

$$GWP_{i} \equiv \frac{\int_{0}^{TH} RF_{i}(t) dt}{\int_{0}^{TH} RF_{r}(t) dt} = \frac{\int_{0}^{TH} a_{i} \cdot [C_{i}(t)] dt}{\int_{0}^{TH} A_{r} \cdot [C_{r}(t)] dt}$$

Global Warming Potential Values

Table 2.14. Lifetimes, radiative efficiencies and direct (except for CH₄) GWPs relative to CO₂. For ozone-depleting substances and their replacements, data are taken from IPCC/TEAP (2005) unless otherwise indicated.

Industrial Designation			Radiative	Global Warming Potential for Given Time Horizon			al for
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR [‡] (100-yr)	20-yr	100-yr	500-y
Carbon dioxide	CO ₂	See belowa	b1.4x10−5	1	1	1	1
Methanec	CH ₄	12°	3.7x10 ⁻⁴	21	72	25	7.0
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	15
Substances controlled b	y the Montreal Protoco	ı					
CFC-11	CCl₃F	45	0.25	3,800	6,730	4,750	1,62
CFC-12	CCI ₂ F ₂	100	0.32	8,100	11,000	10,900	5,20
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,40
CFC-113	CCI ₂ FCCIF ₂	85	0.3	4,800	6,540	6,130	2,70
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,73
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,99
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,76
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	57
Halon-2402	CBrF ₂ CBrF ₂	20	0.33		3,680	1,640	50
Carbon tetrachloride	CCI ₄	26	0.13	1,400	2,700	1,400	43
Methyl bromide	CH₃Br	0.7	0.01		17	5	
Methyl chloroform	CH₃CCI₃	5	0.06		506	146	4
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	54
HCFC-123	CHCl₂CF ₃	1.3	0.14	90	273	77	2
HCFC-124	CHCIFCF ₃	5.8	0.22	470	2,070	609	18
HCFC-141b	CH₃CCI₂F	9.3	0.14		2,250	725	22
HCFC-142b	CH ₃ CCIF ₂	17.9	0.2	1,800	5,490	2,310	70
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	3
HCFC-225cb	CHCIFCF2CCIF2	5.8	0.32		2,030	595	18
Hydrofluorocarbons							
HFC-23	CHF ₃	270	0.19	11,700	12,000	14,800	12,20
HFC-32	CH ₂ F ₂	4.9	0.11	650	2,330	675	20
HFC-125	CHE CE	20	0.53	2 800	6 350	3 500	1 10

Global Warming Potential Values

	Lifetime	GWP	time ho	rizon
	(years)	20 years	100 years	500 years
		1	1	1
Carbon dioxide	Complex	1	1	1
		1	1	1
	12	72	25	7.6
Methane	12	62	23	7
	12	56	21	6.5
	114	289	298	153
Nitrous oxide	114	275	296	156
	120	280	310	170
	270	12,000	14,800	12,200
HFC-23	260	9,400	12,000	10,000
	264	9,100	11,700	9,800
	14	3,830	1,430	435
HFC-134a	13.8	3,300	1,300	400
	13.8	3,400	1,300	420
	50,000	5,210	7,390	11,200
CF ₄ (PFC)	50,000	3,900	5,700	8,900
	50,000	4,400	6,500	10,000
	3,200	16,300	22,800	32,600
Sulfur hexafluoride	3,200	15,100	22,200	32,400
	3,200	16,300	23,900	34,900

http://ghginstitute.org/2010/06/28/what-is-a-global-warming-potential/

Row 1: 2007 IPCC AR4 (See Chapter 2 of Working Group I report)

Row 2: 2001 IPCC TAR (See Chapter 6 of Working Group I report)

Row 3: 1996 IPCC SAR (See Chapter 2 of the Working Group I report)

There are three key factors that determine the GWP value of a GHG:

- •the gases absorption of infrared radiation,
- where along the electromagnetic spectrum (i.e., what wavelengths) the gas absorbs radiation, and
- the atmospherical VVarming

We typically only use GWP values for gases that have a long atmospheric lifetime (i.e., in years). Because only these gases last long enough in the atmosphere to mix evenly and spread throughout the atmosphere to form a relatively uniform concentration. GWP values are meant to be "global," as the name implies. So if a gas is short-lived and does not have a global concentration of a gas in the concentration of the duck and entities in the fertile of the concentration of the concentration

Specifically, the gases with relatively long atmospheric lifetimes that tend to be evenly distributed throughout the atmosphere, and therefore have global average concentrations, are CO2, CH4, N2O, HFCs, PFCs, and SF6. The short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, other ambient air pollutants (e.g., NOx, and NMVOCs), and tropospheric aerosols (e.g., SO2 products and black carbon) vary spatially, and consequently it is difficult to quantify their global radiative forcing impacts.

Some GWP values may also account for indirect as well as direct effects. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas(es) that is/are also a greenhouse gas, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases.

In sum, the higher the GWP value the more infrared radiation the gas will tend to absorb over its lifetime in the atmosphere. Now, there are three more complications to this story.

The first is that gases will absorb certain wavelengths of radiation. GHGs each absorb in a given "window" of the spectrum. The more that window is filled up, the less there is to absorb. So, as concentrations of certain gases increase they can saturate that wavelength, leaving no more radiation for additional concentrations of gas in the atmosphere to absorb.

The second complication is one that occasionally trips people up. Remember above when we defined GWP by saying "cumulative radiative forcing...integrated over a period of time"? Well, that means that we have to define a time period for the integration to occur. You have to know what the integration period is to make sure you are using the correct GWP. The typical periods that the IPCC publishes are 20, 100, and 500 years.

Now, to be clear, everyone pretty much universally uses 100 year GWP values, so you often never see the time period even cited. But occasionally, someone will use something different, not realizing that they are breaking convention. It is also possible to compute an infinite time horizon GWP value, which would basically mean that accounted for every bit of radiative forcing of every molecule of gas as long as it existed in the atmosphere.

The last complication relates to the fact that the IPCC keeps updating its GWP values with each of its major scientific assessment reports. It makes sense to update GWP values as our scientific understanding improves. However, the problem is that people are using and making commitments based on GWP values while these revisions are taking place. So, say a company or a country says it will reduce its emissions by 10% and achieves that goal. Then all of a sudden GWP values change and now they no longer make the goal if new GWP values are used (due to the mix of different GHGs they emit and reduce). It would be like moving the net after you already kicked the ball towards the goal.

For this reason, the Kyoto Protocol fixed the use of GWP values published by the IPCC in 1996 in its Second Assessment Report. Since then the IPCC has updated its GWP values twice, once in 2001, and again in 2007. The result has been a proliferation of GWP values out there that leads to a lot of confusion.

Specifically, the Parties to the UNFCCC said:

In addition to communicating emissions in units of mass, Parties may choose also to use global warming potentials (GWPs) to reflect their inventories and projections in carbon dioxide-equivalent terms, using information provided by the Intergovernmental Panel on Climate Change (IPCC) in its Second Assessment Report. Any use of GWPs should be based on the effects of the greenhouse gases over a 100-year time horizon. In addition, Parties may also use other time horizons. (FCCC/CP/1996/15/Add.1)

The major causes for the IPCC's updates to GWP values involved new laboratory or radiative transfer results, improved atmospheric lifetime estimates, and improved calculations of CO2 radiative forcing and CO2 response function. When the radiative forcing of CO2 is updated, then the GWPs of the other gases relative to CO2 also change.

The result of the varying time periods and the regular updates by the IPCC is a complicated state of affairs. This table presents GWP values for the most common GHGs (there are many more if http://gnginstitute.org/2010/06/28/what-is-a-

But the truth is, contrary to what a lay person might expect, we typically only use values over a 100 year time period, even though some gases have lifetimes of thousands of years. And we use good highlighted in red in the table).

But the truth is, contrary to what a lay person might expect, we typically only use values over a 100 year time period, even though some gases have lifetimes of thousands of years. And we use highlighted in red in the table).

Radiative Forcing

- rate of energy change per unit area of the globe as measured at the top of the atmosphere
- expressed in units of Watts per square metre

RADIATIVE FORCING COMPONENTS

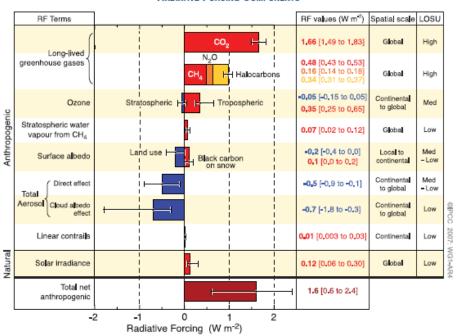


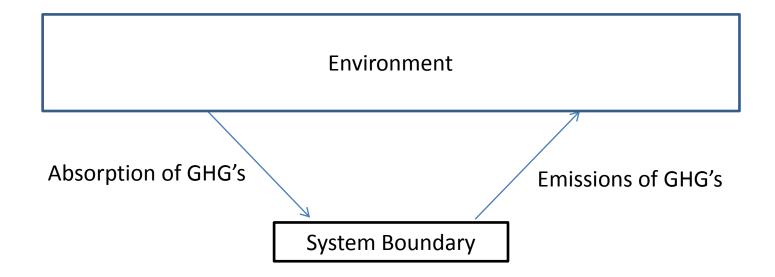
Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in this figure due to their episodic nature. The range for linear contrails does not include other possible effects of aviation on cloudiness. (2.9. Figure 2.20)

Carbon Footprint: Impact Assessment Method

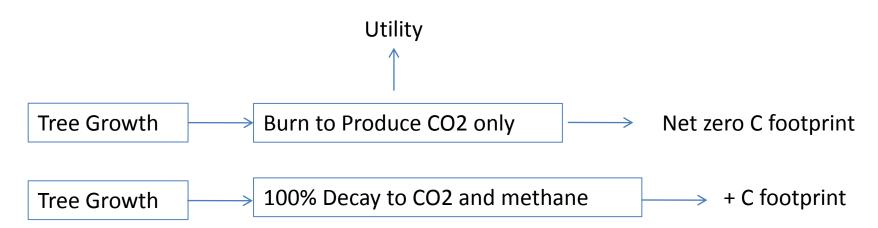
- Partial life cycle analysis
- Historicially: the total set of greenhouse gas (GHG) emissions caused by an organization, event, product or person (UK Carbon Trust, 2009)
- **Practically:** A measure of the total amount of carbon dioxide (CO₂) and methane (CH₄) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent (CO₂e) using the relevant 100-year global warming potential (GWP100) (Wright etal, Carbon Mgmt, 2011)

Carbon Footprint: Impact Assessment Method

 IPCC is the leading authority in evaluating the science behind GWP

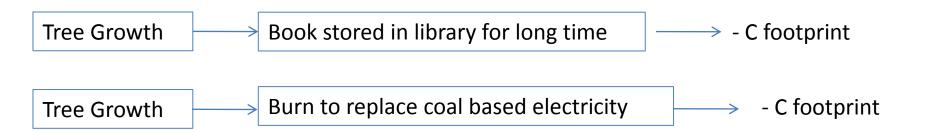

Revision Year	CO ₂ equivalents for CH ₄	CO ₂ equivalents for N ₂ O
1996	21	310
2001	23	296
2006	25	298

Carbon Footprint: A Material Balance of GHG's



Carbon footprint = Emissions- Absorption (kg CO2 equivalents)

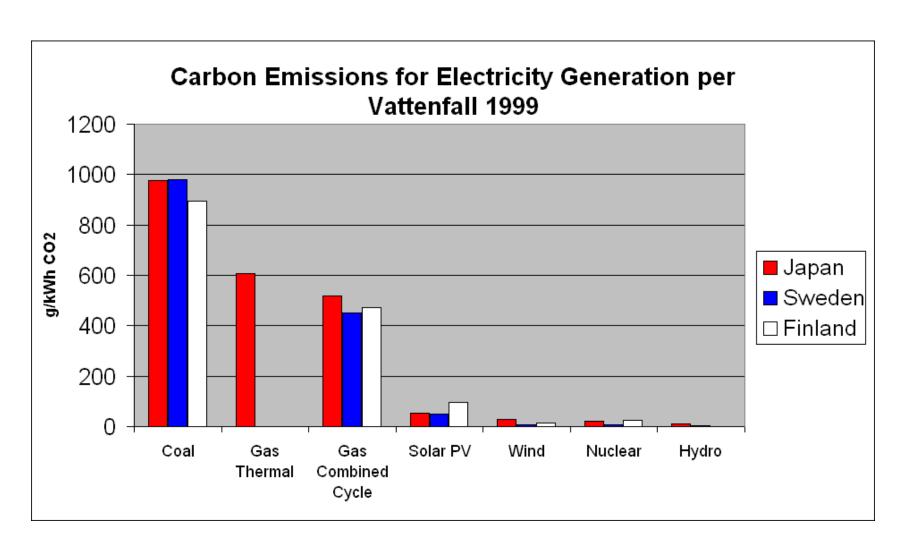
Carbon Footprint: Impact Assessment Method


- Typically, a carbon footprint does not consider biogenic (from living processes) carbon nor does it consider CO2 emissions from the burning or decay of the biogenic material (they balance each other)
- Biogenic material decay/burning that produces methane or N2O must be considered

Carbon Footprint: Impact Assessment Method

- Non renewable resources (coal, oil) are considered since they have been formed over very long time scales and are not being formed over time scales of interest
- Materials, transportation, energy often have associated with them carbon emissions
- Long term storage of carbon away from the atmosphere is considered a negative C footprint contribution
- When one product with a lower C footprint replaces another with larger C footprint, an avoided C input to the atmosphere is claimed, a negative C footprint contribution

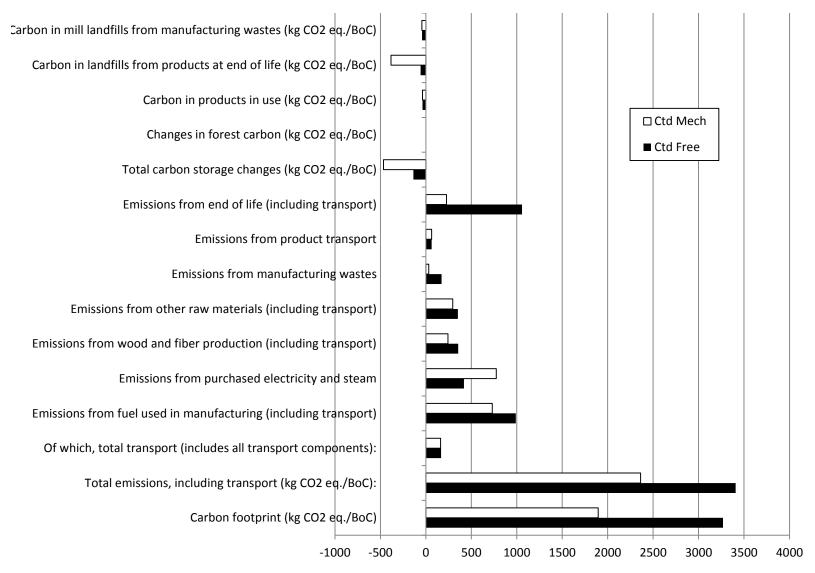
Carbon Footprint: CO2 list.org


This list may confirm what you know, or may surprise you.

CO, is not caused by others, it is caused by our choices: Heating & cooling; Buying products; Red meat versus chicken and grain; Cars and

COXLIST.ORG	KILOS OF CO2	POUNDS OF CO,	UNITS OF MEASURE FOR EACH ITEM				
<u>Home</u>	100	fect of other ise gases)	(We and most others measure CO ₂ by		Complete sources and calculations are at xls.CO2List.org Data from US, except when the following symbols appear: † Data are from UK † Data are from UK		
Bold shows some interesting items			weight. Its size varies, so measured in volume. For other	items we pick			
			appropriate units, show	n below.)	here. Contact us <u>16 March 2012</u>		
CO ₂ POUNDS RELEASED WHILE MAKING PRODUCTS							
1-FOOD	KILOS OF CO2	POUNDS OF CO2		Pounds of CO ₂ per 500 Calories (this is 1/4 of a daily 2,000- Calorie diet)	Sweden labels individual food items		
Red meat	22	22		12	92% from production of animals & their feed, including N2O & methane. Remainder is transport of inputs & meat, and selling. (interesting article by former Texas Ag Commissioner http://jimhightower.com/node/6901)		
Chicken, fish, eggs	6	6		4	81% from production of feed & meat		
Dairy	4	4		6	91% from production of feed & animals		
Cereals, carbohydrates	3	3	Pounds CO ₂ per pound of product, or Kilos of CO2 per	1.5	75% from production of crops		
Fruit, vegetables	2	2	kilo of product	4	74% from production of crops		
Oils, sweets, condiments	2	2		0.5	74% from production of crops		
Balanced Diet				1.7	USDA Food Guide: 53% carbohydrate, 29% oils, 18% protein (here protein is chicken, fish, eggs)		
					http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2005/2005		
			008 "Food-Miles and the Relate eather, biofuels) release greenho		http://pubs.acs.org/doi/full/10.1021/es702969f http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf		
	and Crutzen et	al. 2008 "N ₂ O	Release")		http://www.atmos-chem-phys.net/8/389/2008/acp-8-389-2008.html		
			animal stomachs and intestines icularly chapters 6 on land use		http://cip.cornell.edu/biofuels/		
Potato chips‡	2	2			Mostly from growing crops: $\mathrm{N}_2\mathrm{O}$ from nitrogen-fixing bacteria, fuel		
Orange juice	0.9-1.4	0.9-1.4	pounds CO ₂ per pound of product		pounds CO ₂ per pound of product The figures in the section above are larger, and come from more complete methodology.		The figures in the section above are larger, and come from a much more complete methodology.
Bottled smoothie‡	1.1	1.1	kilos CO ₂ per kilo of product				
Organic new potato‡	0.29	0.29					
Potato, not organic‡	0.24	0.24					
	Sources: Carbo and Report CT		nonprofit, has a summary		http://www.carbon-label.com/individuals/product.html http://www.carbontrust.co.uk/Publicsites/cScape.CT.PublicationsOrde		
	•		study reported in the NY Time	es.	id=CTC744 http://www.nytimes.com/2009/01/22/business/22pepsi.html/		

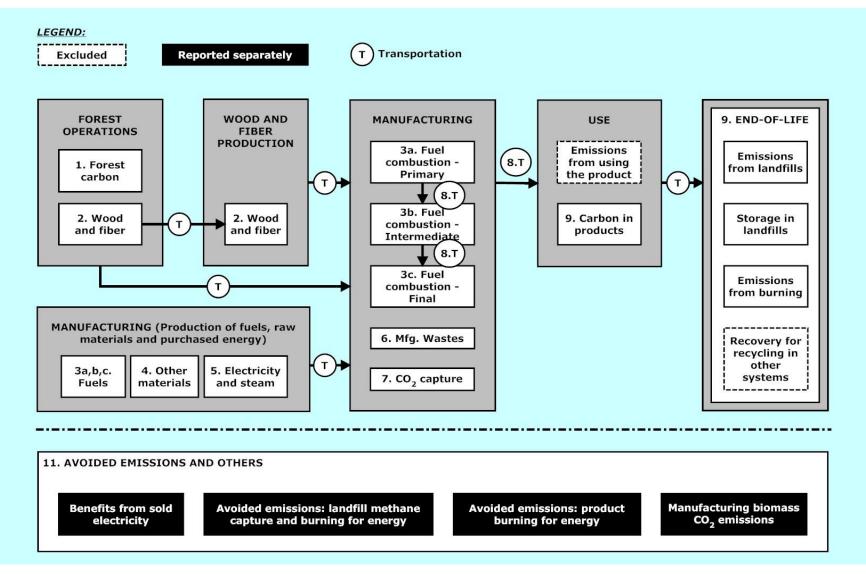
Carbon Footprint:


Japan's Central Research Institute of the Electric Power Industry's

Carbon Footprint Example: Coated Paper (Catalog)

Data and Graphs from NCASI LCA P&W Grades, 2010 Software used from NCASI, FEFPRO

Life Cycle Analysis of Paper: Carbon Footprint Results



Basic Steps of the Carbon Footprint

- Define the footprint boundary
- Define the scope
- Define the Basis of Calculation
- Begin to complete the Life Cycle Inventory
 - Forest Carbon Changes
 - Wood and Fiber
 - Fuels from Mfg
 - Other Materials
 - Electricity and Steam
 - Mfg waste
 - Product Transport
 - End of Life
- Evaluate Results, Interpret, Report

Define the footprint boundary

- Cradle to Grave of catalog paper, coated free sheet
- 100 years

Define the scope

- 100 years
- Scope 1: all direct GHG emissions from owned production;
- Scope 2: indirect GHG emissions from consumption of purchased electricity, heat or steam; and
- Scope 3: indirect GHG emission from systems such as extraction and production of purchased materials and fuels, transportation in *non-owned* vehicles, or production facilities operated by parties other than the user.

Define the Basis of Calculation

Basis of Calculation (BoC) is the metric upon which all of the data input, calculations, and result output are based. For example, a BoC of 1000 kg of product (one metric tonne) means that data input such as quantity of raw material consumed is entered per 1000 kg of production (e.g., a BoC of 1000 kg and log input of 2000 kg means that 2 tonnes of logs are consumed in the production of 1 tonne of product).

Name of this footprint	Coated Freesheet NCASI Number of Uses Cradle to Grave
_	
Product Name	Coated Freesheet
Product Type	coated woodfree
Footprint Boundaries	Cradle to Grave only in this version
Description of a single product	1 mdst (5% water)
Basis of Calculation (BoC)	1 machine-dry short ton (5% water)
Basis of calculation (BoC) expressed as mass (dry kg)	861.82556

Life Cycle Inventory: Forest Carbon Changes

- Must understand if the land that is being used to provide the amount of wood needed to make paper is being changed such that the net carbon stock on the land for 100 years is changing over many harvests
- Not commonly known, but can be important
- In developed countries, significant proportion is harvested sustainably and many certified

Forest name		Change in carbon stocks (kg carbon/BoC)		
	carbon stock changes	Default value	Selected value	
Generic Forest	Constant Stock	0	0.00	

Life Cycle Inventory: Wood and Fiber

- Wood and Fiber inputs into manufacturing
- Northern Hardwood chips example, but most cases have multiple inputs

		Proposed defaults	From owned operations	From non- owned operations
Quantity (kg/	BoC, dry basis)	No default		261
Moisture content as received (fractio	n between zero and one)	No default		0.5
Emissions for this fiber source	Scope 1	0.130		0
(kg CO2 eq./kg dry)	Scone 2	0.090		0
(kg CO2 eq./kg dry)	Scope 3	0.010		0.230
		Wet tonnes	0	0.522
	Total	shipped tonnes	0.52	2

	kg CO₂ eq./BoC			
	Scope 1	Scope 2	Scope 3	
Emissions for this fiber source	0	0	50.028364	
Truck, owned	0		0	
Truck, non-owned			4.394349	
Rail, owned	0		0	
Rail, non-owned			0.1841231	
Water inland, owned	0		0	
Water inland, non-owned			0	
Water ocean, owned	0		0	
Water ocean, non-owned			0	
Total	0	0	54.606836	
Transport only	0		4.5784721	

Life Cycle Inventory: Fuels Consumed

Coal, example

		Proposed defaults	Burned in owned operations	Burned in non-owned operations
Quantity (GJ HHV/E	BoC, dry basis)	No default	5.56	
Moisture content as received (fraction	between zero and one)	0.1	0.1	
	Combustion	90.32	90.32	N/A
Emissions for this fuel (kg CO ₂ eq./GJ HHV)		5.382	5.382	N/A
	Total	95.702	95.702	
		Transported tons	0.196744515	0
		Total transported tons	0.1967	44515

		kg CO ₂ eq./Bo0	
	Scope 1	Scope 2	Scope 3
Fuel-related emissions	425.8628		25.376366
Truck, owned	0		0
Truck, non-owned			0.0453493
Rail, owned	0		0
Rail, non-owned			2.3267772
Water inland, owned	0		0
Water inland, non-owned			0.0545282
Water ocean, owned	0		0
Water ocean, non-owned			0
Total	425.8628		27.80302
Transport only	0		2.4266546

Life Cycle Inventory: Fuels Consumed

Black liquor, organic material byproduct of making paper

		Proposed defaults	Burned in owned operations	Burned in non-owned operations
Quantity (GJ HHV/E	BoC, dry basis)	No default	9.1	
Moisture content as received (fraction	between zero and one)	0.35	0.35	
	Combustion	0.637	0.637	N/A
Emissions for this fuel (kg CO ₂ eq./GJ HHV)		0	0	N/A
	Total	0.637	0.637	
		Transported tons	1	0
		Total transported tons	1	

	kg CO ₂ eq./BoC				
	Scope 1	Scope 2	Scope 3		
Fuel-related emissions	4.830908		0		
Truck, owned	0		0		
Truck, non-owned			0		
Rail, owned	0		0		
Rail, non-owned			0		
Water inland, owned	0		0		
Water inland, non-owned			0		
Water ocean, owned	0		0		
Water ocean, non-owned			0		
Total	4.830908		0		
Transport only	0		0		

Life Cycle Inventory: Other Materials

Example Latex coating material

	Proposed defaults	User entry
Quantity (kg/BoC, dry basis)	25.85	25.85
Moisture content as received (fraction between zero and one)	0	0
Upstream emissions for this raw material (kg CO ₂ eq./kg dry)	2.628	2.628
Total received tonnes (wet)	0.02585	

	kg CO₂ eq./BoC		
	Scope 1	Scope 2	Scope 3
Upstream Emissions			57.60986
Truck, owned	0		0
Truck, non-owned			0.533979
Rail, owned	0		0
Rail, non-owned			0.079094
Water inland, owned	0		0
Water inland, non-owned			0
Water ocean, owned	0		0
Water ocean, non-owned			0
Total	0		58.22294
Transport only	0		0.613073

Life Cycle Inventory: Electricity and Steam

Need to know quantities and location of electricity

Quantity (MWh/BoC)	Region supplying the electricity	Default emission factor (kg CO ₂ eq./MWh)		Selected emission factor (kg CO ₂ eq./MWh)			
	electricity	Scope 2	Scope 3	Scope 2	Scope 3	Used for	
0.0183	Alabama	711.0	19.2	18.2 711.0000 18.2000	18 2000	Combined	
0.0165	Alabama	711.0	10.2		16.2000	operations	
0.0518	Kentucky	1045.4 25.3	25.3	1045.4000	25.3000	Combined	
0.0516	Remucky	1045.4	25.5	1045.4000	25.3000	operations	
0.0157	Maryland	711.5	18.2	711.5000	18.2000	Combined	
0.0137	iviai yiai lu	711.5	10.2	711.3000	10.2000	operations	
0.0306	Maine	393.6	11.5	393,6000	0 11.5000	Combined	
0.0300	ivialite	393.0	11.5	393.0000		operations	
0.0515	Michigan	738.2	18.8	738.2000	10.0 739.2000 10.000	18.8000	Combined
0.0515	Michigan	130.2	10.0		10.0000	operations	

kg CO₂ eq./BoC			
Scope 1	Scope 2	Scope 3	
	11.03396573	0.282444692	
	45.92225396	1.111376531	
	9.472955502	0.242315938	
	10.21380252	0.298421568	
	32.23979045	0.821062125	

Life Cycle Inventory: Electricity and Steam

• For steam used a proxy:

Quantity (GJ/BoC)	Steam supplier/Source of emission factor	Default emission factor (kg CO ₂ eq./MGJ) Scope3	Selected emission factor (kg CO ₂ eq./GJ) Scope 3
0.0434	used natural gas EF	No default	63.324

Life Cycle Inventory: Manufacturing Wastes

On site landfill that decays

	Proposed	Selected
	default	value
Quantity of manufacturing wastes placed in industry landfills (dry kg/BoC)	43.09	83.50
Fraction of carbon in wastes	0.275	0.275
Fraction of carbon in wastes permanently stored	0.50	0.50
Fraction of wastes from owned operations	No default	1.00

Results

	Scope 1	Scope 3
Mass of methane		
emitted from mill		
landfills (kg CO ₂		
eq./BoC)	172.21875	0
Mass of carbon		
permanently stored in		
mill landfills (kg CO ₂		
eq./BoC)	42.09791667	
Scope 1 Biogenic CO ₂		
emitted (kg CO ₂		
eq./BoC)	23.1538542	

Life Cycle Inventory: Product Transport

All transport steps involved, default emmission data used

Product descriptor:	# T23 Code 293 USDOT 99,04 and USEPA 06 (printer to customer) 91%
Product	Advertising material, commercial or trade catalogues, and similar printed
transported:	products
Quantity (dry	784.26
kg/BoC):	704.20
Moisture content:	0.08

	Proposed defaults		Owned trans	portation	Non-owned transportation	
Mode 	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance, km	Fraction of quantity transported	Distance , km
Truck	1	403.9			1	403.9
Rail	0	0				
Freshwater (inland) shipping	0	0				
Marine (ocean) shipping	0	0				

	kg CO₂ eq./BoC			
	Scope 1	Scope 2	Scope 3	
Truck	0		32.19272	
Rail	0		0	
Marine (ocean) shipping	0		0	
Inland (freshwater) shipping	0		0	
Total	otal 0 32.192			

Life Cycle Inventory: Product Transport

• All transport steps involved, default emmission data used

Transportation mode	(kg CO2 / km*tonne)				
Transportation mode	Combustion	Precombustion	Total		
Truck	0.0805	0.013	0.0935		
Rail	0.0191	0.0031	0.0222		
Marine (ocean)	0.0163	0.0022	0.0185		
Inland (freshwater)	0.0288	0.0046	0.0334		
Small truck (EOL)			1.26		

Life Cycle Inventory: End of Life: Carbon in Products

- How much carbon exists in products. Needed for end of life and carbon storage in products.
- Half life, number of years for the existing paper in use to half
- C permanently stored (in landfills)

Product	Carbon content (fraction)	Half-life (years)	Carbon permanently stored (fraction)
bleached kraft board	0.50	2.54	0.12
bleached kraft paper (packaging & industrial)	0.48	2.54	0.61
coated mechanical	0.50	2.54	0.85
coated woodfree	0.50	2.54	0.12
average containerboard	0.50	2.54	0.55
newsprint	0.46	2.54	0.85
recycled boxboard	0.50	2.54	0.55
recycled corrugating medium	0.50	2.54	0.55

Life Cycle Inventory: End of Life

- Define the amount recycled
- Define the amount burned for energy and landfilled
- Built in data about landfill emissions

The final product is probably used and disposed of in:

U.S.

	Fract	tions
Disposition	Proposed	User
	defaults	Selection
Recycling	0.4210	0.388
Landfill	0.4696	0.498
Burning w/ energy recovery	0.1094	0.114

Transport distances, km				
Proposed User Selection defaults				
32.18	32.18			
32.18	32.18			
32.18	32.18			

Burning assumptions:

- GHG emissions are mainly N₂O.

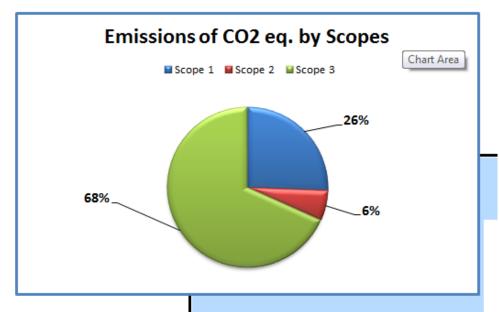
Landfill assumptions:

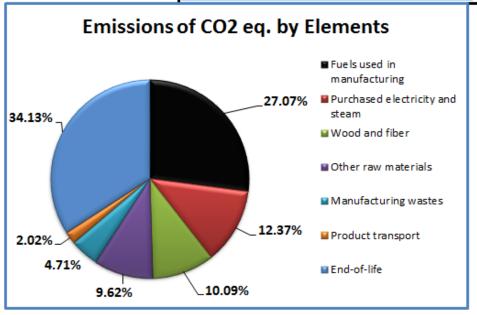
- Landfills are assumed to be completely anaerobic.
 - Fraction of gas transformed to methane:
 - Fraction of methane oxidized to CO₂ in landfill covers

50% 10%

Life Cycle Inventory: End of Life

Mass of product remaining in use after 100 years (kg/BoC)	31.58112712
Mass product landfilled (kg product/BoC)	413.46172757
Mass carbon landfilled (kg C/BoC)	133.54813801
Mass carbon permanently stored (kg C/BoC)	16.02577656
Mass if carbon transformed to gas (kg C/BoC)	117.52236145
Mass of carbon transformed into methane (kg C/BoC)	58.76118072
Mass of carbon in methane not oxidized in landfill covers (kg C/BoC)	52.88506265
Mass of carbon transformed into CO ₂ (kg C/BoC)	5.87611807
Mass of carbon in methane burned for energy recovery (kg C/BoC)	23.26942757
Mass of methane emitted (kg CH ₄ /BoC)	39.48751345
Landfill methane (kg CO ₂ eq./BoC)	987.1878361
Burning GHGs (kg CO ₂ eq./BoC)	0.946478653
Transport GHGs (kg CO ₂ eq./BoC)	69.88853723
Total EOL (scope 3) GHG emissions (kg CO₂ eq./BoC)	1058.022852
Carbon storage (kg CO₂ eq./BoC)	58.76118072

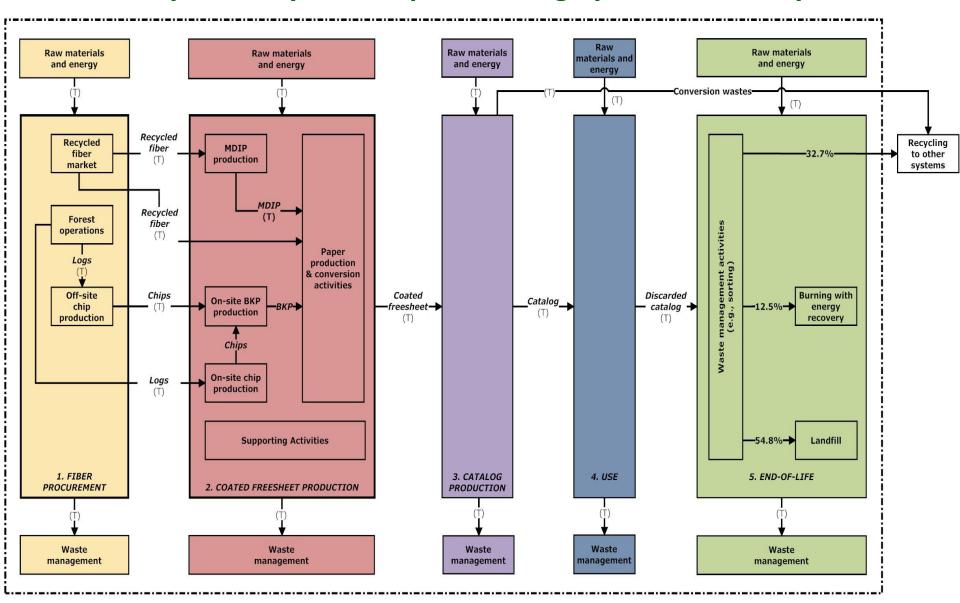

Life Cycle Inventory: Analysis


- Check for completeness, consistency, errors.....
- Interpret....

Basis of calculation (BoC, kg)	861.82556			
	Total	Scope 1	Scope 2	Scope 3
Total emissions, including transport (kg CO ₂				
eq./BoC):	3100	793.5	188.6	2118
Of which, total transport (includes all transport				
components):	161.2	0	0	161.2
· · · · · · · · ·				
Emissions from fuel used in manufacturing				
(including transport)	839.2	647.5	0	191.7
Emissions from purchased electricity and steam	383.5	0	188.6	194.9
Emissions from wood and fiber production				
(including transport)	312.9	0	0	312.9
Emissions from other raw materials (including				
transport)	298.1	0	0	298.1
Emissions from manufacturing wastes	146	146		0
Emissions from product transport	62.53	0	0	62.53
Emissions from end of life (including transport)	1058			1058
Total carbon storage changes (kg CO ₂ eq./BoC)	138.3			
Changes in forest carbon (kg CO ₂ eq./BoC)	0	Met	thod used to	Weighted
		estimat	te amount of	avg first
Carbon in products in use (kg CO ₂ eq./BoC)	37.4	pro	oduct in use:	order
Carbon in landfills from products at end of life		·		
(kg CO ₂ eq./BoC) 58.76				
Carbon in mill landfills from manufacturing				
wastes (kg CO ₂ eq./BoC)	42.1			


Life Cycle Inventory: Analysis

- Check for completeness, consistency, errors.....
- Interpret....



Life Cycle Analysis of Paper: Carbon Footprint Results

Life Cycle Analysis of Paper: Catalog System Boundary

Full Life Cycle Analysis of Paper: Carbon Footprint Results

Table ES-6. LCIA Results – Catalog, Coated Freesheet

Impact category	Unit	Total (unit/ catalog)	1- Fiber procurement	2- Coated freesheet production	3- Production of catalogs	4- Transport and use	5- End- of-life	Storage in use and landfill
Global Warming (GW)	kg CO ₂ eq.	4.89E-01	5.4%	43.6%	15.7%	1.2%	37.7%	-3.4%
Acidification (AC)	H ⁺ moles eq.	1.67E-01	7.6%	67.4%	21.1%	1.1%	2.9%	
Respiratory effects (RES)	kg PM _{2.5}	6.52E-04	3.5%	77.9%	15.6%	0.3%	2.6%	
Eutrophication (EU)	kg N eq.	8.85E-04	1.9%	19.0%	6.2%	0.2%	72.8%	N/A
Ozone depletion (OD)	kg CFC- 11 eq.	2.63E-08	6%	53%	31%	4%	7%	
Smog (SM)	kg NOx eq.	2.10E-03	7.7%	36.4%	48.7%	1.8%	5.3%	
Fossil fuel depletion (FF)	MJ surplus	3.94E-01	9.3%	52.4%	29.8%	2.6%	5.9%	

 $^{{\ }^{\}hbox{\scriptsize 11}}$ Results obtained using the ${\it ecoinvent}$ database only (see Section 9.3.1.2 for more details)

National Council for Air and Stream Improvement, Inc. (NCASI). 2010. *Life cycle assessment of North American printing and writing paper products*. Unpublished Report. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

Summary

- GHG concentrations are rising abruptly
- From a scientific viewpoint these are expected to increase radiative forcing and global warming
- A carbon footprint of a service is a method to gauge the net GWP
 - Includes emissions
 - Includes storage
- The carbon footprint is a partial life cycle analysis and as should not be considered in isolation
 - Often there is a tradeoff between carbon footprint and other environmental impacts that should be considered

Summary

- Global Carbon Cycle
- Global Warming Potential
- Radiative Forcing
- Carbon Footprint