Part A.

\[
\text{% Consistency} = \frac{OD \text{ solids grams}}{Total \text{ grams}} \times 100\%
\]

\[
\text{% Consistency} = \frac{23.2 \text{ grams}}{385 \text{ grams}} \times 100\% = 6.0\%
\]
Consistency Example 1

Part B. Rearrange the consistency equation to solve for the Oven dry solids mass:

- \(OD \text{ solids in Tank} = \frac{\text{Total weight in tank} \times \text{Consistency (\%)} }{100\%} \)

- \(OD \text{ solids in Tank} = \frac{44,000 \text{ lb} \times 6\%}{100\%} = 2640 \text{ OD lb solid in tank} \)
Consistency Example 2

How much of a fiber slurry at a consistency of 2.5 % must be weighed out in order to deliver an OD fiber sample (after drying) of 400 grams?

\[\text{Total wt of slurry} = \frac{\text{OD Solids weight} \times 100\%}{\text{Consistency (\%)} \times 100\%} \]

\[\text{Total wt of slurry} = \frac{400 \text{ OD grams} \times 100\%}{2.5\%} = 16,000 \text{ g} \]
Types of Consistency Sensors

- Pressure Drop
- Mechanical – static or rotating
- Optical
- Microwave
- Sonar

Increasing accuracy
Increasing cost
Pressure Drop

- Locate two pressure taps some distance apart in stock line
- Thicker stock increases friction loss, causing higher pressure drop
- Correlate pressure drop with consistency
- Works only on thicker stock (2-10% consistency)

![Diagram showing pressure drop measurement and correlation with consistency](diagram.png)
Mechanical -- Static

- As stock gets thicker, drag on items in line gets higher
- Insert wheel, paddle or other linkage into stock flow; attach to strain gauge; correlate drag/strain with consistency
- Good for thick stock
- Newer models very reliable and repeatable
Mechanical -- Rotating

- A small impeller or wheel is driven in the stock stream.
- The force required to drive it or the resistance is measured and correlated to consistency.
- Reportedly more accurate and less prone to plugging/fouling than the static sensors.
Mechanical -- Rotating
Optical

- Most popular method for bleached stock; very accurate
- Polarized light source directed into stock stream; detect how much reflected back
- As consistency rises, reflected light increases
- Works best on bleached stock and thin stock (down to 0.1% consistency)

Calculated Consistency

Polarized Light Source → Detector

Stock Flow
Microwave

- New sensor type — even more accurate than optical, and reportedly more robust
- Works on bleached or unbleached stock
- Not sensitive to filler content
- Works on thicker stock
- Based on attenuation of microwave signal

Microwave Source

Stock Flow

Detector

Calculated Consistency
Sonar

- Newest sensor type
- Emitter sends acoustic signal down pipeline
- Based on reflected signal, an amazing amount of information can be gained
 - Velocity
 - Volumetric flow
 - Consistency
 - Amount of entrained air
Consistency

<table>
<thead>
<tr>
<th>Consistency, %</th>
<th>Moisture Content, %</th>
<th>Description</th>
<th>Where Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 6 %</td>
<td>100 – 94 %</td>
<td>Known as low consistency stock – slurry behaves like water Is easily pumped with normal centrifugal pumps.</td>
<td>Pulp mill – blow tank, stocklines, screens, washer vats Paper mill – stock preparation, refining, headbox, after gravity drainage zone on fourdrinier</td>
</tr>
<tr>
<td>6 – 18 %</td>
<td>94 – 82 %</td>
<td>Known as medium-consistency stock – stock starts to behave more like a solid mush than water Little to no free liquid drains from it when held in the hand; must be pumped with special pumps</td>
<td>Pulp mill – washer dischargemat, bleaching reaction towers, storage tanks (known, unfortunately, as high-density storage tanks) Paper mill – after vacuum zone on fourdrinier</td>
</tr>
<tr>
<td>18 % and higher</td>
<td>82 % and lower</td>
<td>Known as high-consistency stock – stock behaves like a crumbly solid; feels damp No free liquid can be squeezed out by hand; usually move by conveyor or screw.</td>
<td>Pulp mill – high-consistency oxygen bleaching reactor (if used) Paper mill – after press section of paper machine (50 %), after dry section of paper machine (95 %)</td>
</tr>
</tbody>
</table>
Relationship between Moisture Content and Consistency

- Consistency (%) + MC (%) = 100 %

- The **Moisture Content** of a sample is equal to (100 % - Consistency, %).

- The **Consistency** of a sample is equal to (100 % - Moisture Content, %).
DISSOLVED SOLIDS

- Consistency measures the amount of fibers and suspended solids in the mixture.
 - Dissolved solids are used to measure the amount of solids that is dissolved in the liquor.

\[
\text{Dissolved solids, } \% = \frac{\text{Weight of dry dissolved solids}}{\text{Weight of the liquor}} \times 100\%
\]
MASS AND VOLUME IN PAPERMAKING

• In the paper industry, it is always important that we know how much dry fiber is either contained in a given place (a tank, a batch) or how much is flowing through a pipe or system.
• This means that we need to know the MASS of what is in the place or moving past some point in time.
• The funny thing is this: we don’t normally measure mass or mass flow rate – it’s much easier for us to measure volume or volumetric flow rate.
• We need to learn to convert between volume and mass
A papermaking slurry is flowing in a pipe at a measured flow rate of 15,000 gallons/minute.

The consistency is tested and found to be 3.2%.

What is the flow rate of dry fiber through the pipe?

Step 1: What should we do?

Consistency, % = \(\frac{\text{Oven dry weight of sample}}{\text{Total weight of sample}} \) \times 100

But we don’t have total mass flow…we have volumetric flow!

But we find the mass flow using density

\(\text{Density} \left(\frac{\text{lb}}{\text{ft}^3} \right) = \frac{\text{mass (lb)}}{\text{volume (ft}^3)} \)
A papermaking slurry is flowing in a pipe at a measured flow rate of 15,000 gallons/minute.
The consistency is tested and found to be 3.2 %.
What is the equivalent flow rate of dry fiber through the pipe?
Step 2: Find total mass flow
We will assume the density of the stock is 8.314 lb/gallon, this is used as an example, true densities of pulp stock can be found in Cameron’s Handbook.

\[
\text{Mass flow} = \text{volumetric flow} \times \text{density}
\]

\[
\text{Mass flow} = 15,000 \text{ gallons/min} \times \frac{8.314 \text{lb}}{\text{gallon}} = 124,700 \text{ lb/min}
\]
A papermaking slurry is flowing in a pipe at a measured flow rate of 15,000 gallons/minute.
The consistency is tested and found to be 3.2%.
What is the equivalent flow rate of dry fiber through the pipe?
Step 3: Find OD mass flow
OD Flow = (Total Mass Flow) \times \left(\frac{\text{Consistency}}{100\%} \right)

\[\text{OD Solids Flow} = \frac{124,700 \text{ lb}}{\text{min}} \times \frac{3.2\%}{100\%} = 3990 \text{ OD lb min} \]
Charge on Pulp

• Chemicals are added to pulp as a fraction (or percentage) of the oven dry solids in the pulp, which is called a “charge on pulp”

• For instance, a deinking chemical might be said to be charged at 2% on pulp

• What that means is that the mass of the deinking chemical to add is equal to $0.02 \times (\text{OD mass of the fiber})$

• Example, we have 1000 lbs of pulp stock at 10% consistency and we want to charge a bleaching chemical at 5% on pulp, how much of the bleaching chemical do we charge?

• Answer,
 • the amount of OD fiber is 0.1×1000 lb total pulp stock = or 100 lbs of OD fiber
 • If we charge 5% of the bleaching agent then we charge 0.05×100 lbs of OD fiber = 5 lbs of bleaching agent to add
YIELD

- Yield is defined as the amount of product that comes out of some process, relative to the amount of material that went into the process.
- In the paper industry, yield is ALWAYS defined in terms of moisture-free material going in or out – that is, it is based on dry fiber (oven dry).
- Yield is important, because it helps us understand where our raw material is going – how much is lost during screening, how much is dissolved during bleaching, how much is lost during washing, etc.

\[
Yield \% = \frac{\text{Dry weight out of process}}{\text{Dry weight into process}} \times 100
\]
YIELD EXAMPLE

- 3 Tons of recovered paper at 5% MC is recycled, resulting in 45,000 lb of stock at 10% consistency, what is the process yield?

- **OD IN:** $3 \text{ Tons} \times \frac{2000 \text{ lb}}{\text{Ton}} \times \frac{95\%}{100\%} \frac{\text{solids}}{\text{total weight}} = 5700 \text{ OD lb}$

- **OD OUT:** $45,000 \text{ lb} \times \frac{10\%}{100\%} \frac{\text{solids}}{\text{total weight}} = 4500 \text{ OD lb}$

- **Yield =** $\frac{4500 \text{ OD lb}}{5700 \text{ OD lb}} \times 100\% = 79\%$
pH

- pH stands for “potential of hydrogen” and refers to the concentration of hydrogen ions (H+) in water or whatever liquid is being measured.

- In more everyday terms, pH is a unit of measure for determining if a liquid is acidic or basic (alkaline). Something that is neither acidic nor basic is referred to as neutral.

- You may have encountered the term pH in relation to the water in a fish tank or swimming pool. Bad things can happen when pH levels are either too high or too low.
THE pH SCALE...

- How is pH measured in numbers?
 - pH is measured on a scale of 0.0 to 14.0.
 - Numbers < 7.0 = acidic
 - Numbers > 7.0 = basic
 - A pH of 7.0 indicates a neutral liquid

\[\text{pH} = -\log [\text{H}^+ \text{concentration}] \]

If the amount of H\(^+\) goes up 10X, the pH only decreases by 1. The power of the log scale
Adding acids or bases to water changes its pH.

Acids lower the pH of water by increasing the H⁺ concentration.
- Acid examples: sulfuric acid (H₂SO₄), hydrochloric acid (HCl), vinegar (acetic acid, CH₃COOH)

Bases raise the pH of water by increasing the OH⁻ concentration.
- Bases examples: caustic (NaOH, sodium hydroxide), ammonia (NH₃)
Lecture:

Pulping of recovered paper
Pulping of recovered paper

Definition

Pulper: A device whose main objective is to convert recovered paper into a slurry of well separated fibers and other waste paper components.
Pulping of recovered paper

The pulping operation is the first and probably the most critical operation in paper recycling.

Proper pulping is a requirement if unit operations downstream (cleaning, screening, flotation…..) are to be effective.

Incorrect pulping conditions can irreversibly damage fibers making them inappropriate for papermaking uses.
Main Function: Disperse recovered paper into separated fibers.

Several sub-objectives that are also important:
1. Detach contaminants from fibers.
2. Mix paper with water and chemicals at the correct ratios.
3. Maintain contaminants as large as possible to aid subsequent removal processes.
4. Avoid damage to the fibers (fiber cutting).
5. Removal of large debris from system.
Basic Pulping Categories:
Batch vs. Continuos Pulping

Batch Pulping: The feed recovered paper, water and chemicals are all charged at the beginning of the process and are removed all at once at the end of the process. The batch process is repeated.

Continuos Pulping: The feed recovered paper, water and chemicals are continuously added to the pulper and at the same time, the pulped product is also being continuously removed.
Basic Pulping Categories: Low vs High Consistency

Consistency (solids) = 100 * \frac{\text{solids wt}}{\text{solids wt + liquid wt}} = \% K

Low Consistency Pulping: Typically from 3-6 % K. Produces a relatively easily pumpable fluid. The fluid is “pourable”.

High Consistency Pulping: Typically from 8 - 18 % K. Produces a thick, slurry that will not flow under the influence of gravity alone.
General Parts of a Pulper

1. Wastepaper feed method (conveyor).
2. Pulper tub.
3. Rotor - spinning device for agitation, mechanical energy input to the system.
4. Baffles - protrusions to assist in mixing and prevent swirling.
5. Dilution water.
6. Pulper exit.
Mechanical Forces
These are caused when the fast moving rotor impacts material in the relatively slower body of pulp stock around it.

Faster rotor speeds cause more intense mechanical forces in the pulper.
Pulper Forces

- **Hydraulic Forces**: These are caused by the motion of fluid that is caused by the spinning rotor (not by the direct impact of the rotors).

- When two adjacent portions of a fluid are moving in different directions (or at different speeds) a shear force is present. An example in the picture would be at point A.
Forces in a Pulper

- **Attrition**
 - Mechanical shearing forces that occurs between the moving rotor and a static extraction plate near the rotor.
 - The rotor forces fiber bundles between the rotor and extraction plate. Intense hydraulic forces act to cut the fiber bundles and fibers. This can cause significant damage to fibers.
 - Used only for low % K pulping because the pulp must be screenable.
Low Consistency Pulping

- Consistency from 3 - 6%.
- Low profile rotor that rotates at high speeds.
- Motion of rotor causes a vortex of pulp stock. The baffles are used to improve mixing.
- High mechanical force due to impacts of rotor can damage fiber and break contaminants.
Pulper Types: High Consistency

- Typically 8-18 %.
- High profile rotor used. The helical screw type rotor is needed to “pull down” the non-fluid like high % K stock, from the top to the bottom of the pulper.
- At the high % K, fiber-fiber (solid-solid) rubbing dominates the forces experienced in the pulper.
Comparison of Low vs High Consistency Pulping

- Rotor/tank volume is much higher for high % K pulping. This is needed to maintain proper motion of non-fluid pulp stock at high % K.
- Specific power is higher for high % K due to the higher viscosity pulp stock that must be pulped.
- However, the specific power consumption per ton of paper is significantly lower for high % K pulping. This is due to high % K pulping having more tons of fiber for the amount of same pulping volume as a low % K pulper. Also, the relatively less amount of water at high % K pulping causes less energy to be expended on moving water.

<table>
<thead>
<tr>
<th></th>
<th>Low % K</th>
<th>High % K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency %</td>
<td>3 - 6</td>
<td>8 - 18</td>
</tr>
<tr>
<td>Rotor/Tank Vol %</td>
<td>0.1</td>
<td>8</td>
</tr>
<tr>
<td>Specific Power (KW)</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>No load Power (%)</td>
<td>70 - 80</td>
<td>50 - 60</td>
</tr>
<tr>
<td>Rotor Speed m/s</td>
<td>16 - 21</td>
<td>8 - 15</td>
</tr>
<tr>
<td>Specific Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption Kwh/ton</td>
<td>30 - 45</td>
<td>15 - 25</td>
</tr>
</tbody>
</table>
Comparison of Low vs High Consistency Pulping

- Rotor speed is slower for high % K, causing less damage to fibers via mechanical forces of rotor.
- Attrition forces are not used for high % K pulping. This decreases fiber cutting and contaminant breakage.
- RESULTS of above: higher tensile, burst and tear strength for high %K pulping
- High consistency pulping includes more fiber to fiber rubbing.
- RESULTS of above: This action increases detachment of contaminants from fiber surfaces. The detachment of ink from fibers is especially important for washing and flotation deinking.
Comparison of Low vs High Consistency Pulping

- Printing and writing grades consist of a high content of fully bleached hardwood and softwood fibers that are susceptible to damage => gentle high consistency pulping is preferred
- Further printing and writing grades need ink detachment => high consistency pulping with lots of fiber-fiber rubbing is preferred
- OCC recycling, a historically older technology, typically has low consistency pulping because unbleached fibers are less susceptible to damage
One of the sub-objectives of pulping is to remove large debris that enters the system.

Examples of large debris:
- wood
- wet-strength paper
- plastics
- baling wire
- nails and bolts

The removal of debris serves two important functions.
- Protects equipment downstream from damage.
- Prevents plugging of downstream equipment.
Examples of Debris Removal Methods

- Different pulpers have different methods to remove debris, examples of common methods follow.

- High Consistency Batch Pulping
 - HC pulper with Dilution Zone
 - HC pulper with Detrasher

- Low consistency Pulping
 - Continuous Low consistency pulper with Ragger and junk tower.
 - Continuous Low consistency pulper with a de-trashing system
The pulper is designed so that during pulping at 15 - 18% K the pulper volume is only partially full.

At the end of the pulping cycle, dilution water is added to achieve a 5 - 6 % K.

After dilution, accepted stock passes through an extraction plate with holes about 3/4 - 1 inch diameter.

Finally, large debris is flushed from the pulper through a large rejects opening on the side.
The pulper is “full” at high consistency during pulping.

At the end of the pulping dilution water is added at the bottom of the pulper diluting the pulp in the bottom to less than 6%.

A large opening on the bottom/side of the pulper is used as the exit for the pulper contents.

The pulp and debris are separated by an external detrasher.

Note: There is no extraction plate in the pulper.

Note: drawing not to scale.
Continuos Low Consistency Pulper with Ragger and Junk Tower

Low consistency continuos pulper typically have an extraction plate that accepts pulped fibers and rejects debris and unpulped flakes.

The extraction plate/ rotor can cause attrition, resulting in fiber cutting.

A junker is used to collect unpulpables such as bolts or rocks. This debris is thrown out of the pulper into a junk tower where it is removed.

A ragger is also used in many cases to remove bale wire, strings, plastics, etc. The ragger is a continuos “rope” formed by entangled debris. The “rope” is continuosly pulled out of the pulper and cut into sections and disposed. Common in OCC mills.
Recovered OCC bale storage
Loading OCC bales on pulper conveyor
Bale falling into pulper

Pulper
Ragger removing debris from the pulper surface
Ragger pulling rejects out of pulper
Low consistency continuos pulper typically have an extraction plate that accepts pulped fibers and rejects debris and unpulped flakes.

The extraction plate/ rotor can cause attrition, resulting in fiber cutting.

A junker is used to collect unpulpables such as bolts or rocks. This debris is thrown out of the pulper into a junk tower where it is removed.

A ragger is also used in many cases to remove bale wire, strings, plastics, etc. The ragger is a continuos “rope” formed by entangled debris. The “rope” is continuosly pulled out of the pulper and cut into sections and disposed. Common in OCC mills.
Example Detrashing Process

- Light rejects
- Heavy rejects
- Accepts
- Recycle
- Rotor with screen plate
Drum Pulping

- A continuous, high consistency pulping method.
- Most often used for pulping old newsprint.
- Consists of an inclined rotating drum 11-17 rpm through which the paper/pulp travel down. The drum is very large approximately 10 feet high and 100 feet long.
High Consistency Drum Pulper

Conveyor

High % K Zone

Screening Zone

Rejects

Accept Pulp
Drum Pulping

- **Two Zones**
 - **High Consistency Pulping Zone**
 - Paper, water, and chemicals added to 15% K.
 - Baffles on the walls of the drum lift the paper and drop causing defibering in a gentle manner.
 - **Low Consistency Screening Zone**
 - Water is added to dilute stock 3-4% K.
 - Pulped fibers pass through 6 mm holes and are accepted from the pulper.
 - Large rejects continue through the pulper and are discharged at the end.
Drum Pulping

- **Two Zones**
 - High Consistency pulping zone
 - Low consistency pulping zone.
- **High Consistency Pulping Zone**
 - Paper, water and chemicals added to ^ 15% K.
 - Baffles on the walls of the drum lift the paper and drop causing defibering in a gentle manner.
- **Low Consistency Screening zone**
 - Water is added to dilute stock 3-4% K.
 - Pulped fibers pass through 6 mm holes and are accepted from the pulper.
 - Large rejects continue through the pulper and are discharged at the end.
Overview
Rejects
Drum Pulping

- **Advantages**
 - Gentle pulping keeps contaminants large and minimizes fiber degradation.
 - Simple operation that includes screening.

- **Disadvantages**
 - High capital cost.
 - Not an aggressive pulping method (example: cannot pulp wet strength papers).
External Pulping Complementary Equipment

- Often the pulper is within a loop
- Some operations may send back material to the pulper to be further pulped
- Some operations aid in the removal of large debris
- Other operations add more mechanical action to assist in pulping
High density cleaners
High Density Cleaner: removes large heavy rejects from pulp

Objective: separate large heavy contaminants from fibers to protect downstream equipment from damage and pluggage

How it works: centrifugal forces separate materials mainly due to density/size
Detrasher

Accepts

Light weight
Rejects

Rejects out
the back

Heavy

Feed

Accepts
Example detrashing unit

Objective: pulp unpulped pieces of paper/board and separate contaminants using a screen or centrifugal forces to protect downstream equipment from damage and pluggage
Objective: impart mechanical energy to break up flakes of unpulped material.
Pulping Summary

- Several methods to pulp
- Main objective: defiberize
- Secondary Objectives:
 - Remove Large Debris
 - Detach contaminants
 - Not destroy fibers
 - Mix

- Final Thought: If pulping is not done properly, subsequent processing steps will be ineffective and product quality will be unacceptable
Lecture: Screening
Screening separates contaminants based mainly on size, but also on shape and deformability. Performed by presenting a barrier for large contaminants (slots or holes) that allow fibers to pass through.
Screening

0.001 inch = 1 Mil = roughly 25 microns = .025 mm
Modes of Removal

1. Stiff particles with all 3 dimensions larger than width of slot or diameter of hole are rejected.

2. Stiff particles with one or two dimensions smaller than width/diameter have a probability of rejection.

Rejection Probability, %

- 1-dimension (rod) < slot size
- 2-dimension (plate) < slot size

Number of screen contacts
Screening Types and Conditions

<table>
<thead>
<tr>
<th>Screen Type</th>
<th>Screen Openings, mm</th>
<th>Rotor circumference speed, m/s</th>
<th>Consistency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>Hole 2-3</td>
<td>20-30</td>
<td>Yes</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>Hole 0.8-1.5</td>
<td>10-30</td>
<td>Yes</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>Slot 0.1-0.4</td>
<td>10-30</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Screening

- **Types of perforations**
 - coarse holes: 0.110 in or 2.7 mm
 - fine holes: 0.060 in or 1.52 mm
 - coarse slots: 0.010 in or 0.254 mm
 - fine slots: 0.006 in or 0.152 mm

- Also, the fibers offer a resistance to passage, related to the consistency
Example of Disk Screen
Pressure screen
Pressure Screen Principle to Prevent Blinding of Screen

The leading edge of the rotating foil accelerates the stock.

The negative pulse under the sweeping foil momentarily reverses the flow, effectively purging the screen openings.
Pressure Screen Flow Configurations

Centripetal inlet side foils
Centrifugal inlet side foils
Centrifugal and centripetal inlet side foils
Centripetal accept side foils
Screen Plates

- 6 Holes
- 6 Slots
- 6 Contoured
Effect of Reject Rate & Plate Opening on Screen Cleanliness
Screening Factors

- Heavily Contoured Surface Cylinder
- Contoured Surface Cylinder
- Smooth Surface Cylinder

Accept Capacity vs. Pressure Drop (Feed - Accept Pressure)
Screening Factors

- Heavily contoured surface cylinder
- Maximum consistency from pump
- Contoured surface cylinder
- Cylinder plugged
- Smooth surface cylinder

Accept Capacity vs. Feed Consistency graph.
Screen Performance Variables

- **Stock characteristics**
 - fiber type, debris characteristics, debris level

- **Screen design**
 - flow configuration, plate cleaning mechanism, perforation type (holes or slots), rotor speed

- **Operating variables**
 - stock flow rate (pressure drop across screen), feed consistency, reject rate, screen plate perforation size, stock temperature, dilution flow to screen
Screening

Screening Factors

- Perforation Size
- Reject Rate
- Flow Velocity
- Tangential Velocity
- Consistency
Screen Layout:

Always have cascaded screens to save fiber.
Open Gravity Screen
Summary Pressure Screen:

Objective: separate large contaminants from fibers

Can act as barrier screen or probability screen

Typically cascaded to save fiber

Typical conditions to promote increased throughput can have negative impact on cleanliness efficiency.
Lecture:

Centrifugal cleaning
Centrifugal Cleaning

- Remove impurities from the pulp stream based mainly on density
- Centrifugal cleaners remove
 - metals
 - inks
 - sand
 - bark
 - dirt
 - etc.,
Centrifugal Cleaning

Principles of operation

- Centrifugal cleaner uses fluid pressure to create rotational fluid motion in a tapered cylinder.
- Rotational movement causes denser particles to move to the outside faster than lighter particles.
- Good fibers carried inward and upward to the accepted stock inlet.
- Dirt held in the downward current and removed from the bottom.
Three Basic Cleaner Types:

- **High Density Cleaner:** separates very large, heavy contaminants such as rocks, staples, glass. Used after pulping (early in the process) to protect downstream equipment. Diameter = 300-700 mm.

- **Forward Cleaners:** separates fine, heavy contaminants such as sand and inks. Also called cyclones, hydrocyclones, or cleaners. (Described above) Diameter = 70-400 mm

- **Through Flow Cleaner:** separates fine, light contaminants such as glues, adhesives, plastics, foam. Also called light-weight cleaners or reverse cleaners. Diameter = 100-400 mm

- Many other variations.............
Types of Cleaners: Functional Differences

- **Consistency**
 - HC cleaner: 2-4.5% K, MC: 1-2, LC: 0.5-1.5

- **Centrifugal Acceleration** (acceleration due to gravity = 9.8 m/s²)
 - HC cleaner: <60 g, MC: <100g, LC: <1000 g

- **Reject Rate by mass/stage**
 - HC cleaner: 0.1-1% , MC: 0.1-1%, LC: 3-30%
Centrifugal Cleaner: Features and Flow
“Bank Arrangement” of Cleaners

Several cleaners are piped in parallel fashion. A single cleaner is not capable of providing enough throughput for typical industrial flows.
Cleaners

6 Canister
Typical Cleaner “Curve”

Separation Ratio:
\[\frac{m(\text{in}) - m(\text{acc})}{m(\text{in})} \]
\[m = \text{mass flow contaminant} \]

Reject Ratio: \(\text{OD mass flow reject} / \text{OD mass flow inlet} \)
Cascade Arrangement of Cleaners

FEED

Secondary Cleaners

Dilution Water

Primary Cleaners

ACCEPTS

Dilution Water

Tertiary Cleaners

REJECTS
High Density Cleaner
High density cleaners
Through Flow Cleaner: removes low density contaminants

Also note, that reverse cleaners are another type of cleaner used to remove low density contaminants.

Reverse cleaners look like a forward cleaner except the top middle port is the rejects (and is smaller) and the bottom cone tip is the accepts (but is wider), picture not shown here.
Thru-flow cleaners
Centrifugal Cleaner Performance Variables

Stock Characteristics
- fiber type
- contaminant characteristics (size, shape, density), dirt level

Cleaner Design
- body diameter, feed inlet configuration, accept diameter, cylindrical section height, cone angle, spiral grooves application, reject rate control method (fixed orifice and back pressure)
Parameters Affecting Hydrocyclone Cleanliness Efficiency

<table>
<thead>
<tr>
<th>Operating Variable increase in:</th>
<th>Cleanliness Efficiency</th>
<th>Sensitivity to Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Difference</td>
<td>Incr/Decr</td>
<td>High</td>
</tr>
<tr>
<td>Volumetric Flow</td>
<td>Incr/Decr</td>
<td>Medium</td>
</tr>
<tr>
<td>Cyclone Diameter</td>
<td>Decrease</td>
<td>High</td>
</tr>
<tr>
<td>Consistency</td>
<td>Decrease</td>
<td>High</td>
</tr>
<tr>
<td>Flake Content</td>
<td>Decrease</td>
<td>Medium</td>
</tr>
<tr>
<td>Temperature</td>
<td>Increase</td>
<td>Low</td>
</tr>
<tr>
<td>Reject Rate</td>
<td>Increase</td>
<td>Medium</td>
</tr>
<tr>
<td>Flushing Flow</td>
<td>Decrease</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Effect of Particle Properties on Separation

- Particles with large density differences with respect to water are removed more effectively.
- Particles with density near 1 g/cm³ may separate from fibers.
- Larger particle at same density will be removed more effectively than smaller particle.
- Particles of the same density but with favorable hydrodynamic shape (c_wA_ρ) separate more effectively, e.g., a sphere is better than a flat plate, since rejected particles must swim against the main current towards the accepts.
Force balance on a single particle in a hydrocyclone

- **Radial direction:**
 - Net centrifugal force ↔ Drag force

- **Axial direction:**
 - Net gravitational force ↔ Drag force

- **Tangential direction:**
 - Assume: particles move along with fluid
One dimension analysis of single particle

\[\mathbf{F}_d \rightarrow \mathbf{F}_c \text{ (or } \mathbf{F}_g) \]

Assume the time for particle to reach its terminal velocity is very brief

\[m \cdot \frac{dU_s}{dt} = F_c \text{ (or } F_g) - F_d \]

\[0 = F_c \text{ (or } F_g) - F_d \]

\[F_c \text{ (or } F_g) = F_d \]
Particle slip velocity,

\[U_s = \text{velocity of water} - \text{velocity of particle} \]

\[\rho_p \frac{u_t^2}{r} - \rho_l \frac{u_t^2}{r} \right) V_p = \frac{1}{2} \rho_l U_s^2 A_p C_d \]

\[U_s = \sqrt{2 \frac{u_t^2 V_p}{r A_p} \left(\frac{\rho_p - \rho_l}{\rho_l} \right) \frac{1}{C_d}} \]

- \(C_d = \text{drag coefficient} \)
- \(\rho_p, \rho_l = \text{density of particle and fluid} \)
- \(r = \text{radial position} \)
- \(u_t = \text{tangential velocity of fluid} \)
- \(V_p = \text{volume of particle} \)
- \(A_p = \text{projected area of particle} \)
Why is the slip velocity important?

- For high U_s
 - "Reject stream"
 - High u_t (tangential velocity)
 - High ρ_p (particle density)
 - Low C_d (drag coefficient)

- For low U_s
 - "Accept stream"
Several types of cleaners

Objective: remove high/low density contaminants

Must reject material to operate effectively

Several forces/operational variables/particle characteristics that combine to determine effectiveness in removal