Carbon Footprint and Economic Analysis to Determine the Minimum Carbon Price Required for the Utilization of Residual Forest Materials in Greenhouse Gas Mitigation

Dr. Richard A. Venditti* and Christopher Hopkins

Department of Forest Biomaterials North Carolina State University Raleigh, NC 27695-8005

*Dept of Forest Biomaterials, North Carolina State University, Biltmore Hall Rm 1204, 2820 Faucette Drive, Raleigh NC 27695-8005, (919) 515-6185, richard_venditti@ncsu.edu, website: go.ncsu.edu/venditti

Sustainability?

- How do we supply societies needs without harming the environment or future generations' ability to meet their needs?
 - People Planet Profit
- We have many options to meet our demands.
- How to choose the "best" option?
- Life cycle assessment (LCA) helps to inform our choices.
- LCA has objective and subjective parts!!!

Forest Residuals:

- When harvesting wood the residual amount not suitable for timber logs or pulp logs can be substantial
- This material includes branches, thinnings, tops.....
- For hardwood, around 40% residuals
- For softwoods, around 15% residuals
- Are there alternatives to leaving these residuals on the ground?
- How can they best be utilized?

Biomass Gasification for Electricity: 16 units of energy produced/1 unit of fossil fuel input

Life Cycle Assessment of a Biomass Gasification Combined-Cycle System, Margaret K. Mann, Pamela L. Spath, NREL, 1997

Goal:

- Goal: Determine among several alternative utilization scenarios, for a ton of residual biomass which scenario:
 - Has the smallest carbon footprint?
 - Has the lowest cost?
 - Has the lowest cost per ton of carbon dioxide saved?
 - What is the minimum price of carbon to break even with leaving the residuals on the ground?

Methodology:

Carbon Footprint: Impact Assessment Method

- Partial life cycle analysis
- A picture of the overall greenhouse gas (GHG) impact (not just CO2) of a product over its lifecycle (cradle-to-grave).
- Reports the net amount of GHG's for a defined process, in units of kgCO2(equiv)/basis

Revision Year	CO ₂ equivalents for CH ₄	CO ₂ equivalents for N ₂ O
1996	21	310
2001	23	296
2006	25	298

Forest Residuals:

Pretreatments

Pretreatments:

Advantages: dry, hydrophobic, low density, brittle, energy dense

Pretreatments

Process	Treatment	Moisture % (wet basis)	Solids Loss	% Carbon in product (dry basis)	Heating value, MMBTU/ton
Green wood		50	0	50	7.4
Field-dried	Under tarp for 3 months	20	0	50	14
Torrefaction	Heated to 250-300 C w/o oxygen	0	1/3	53	22
Char	Heated to 450-660 Cw/o oxygen	0	2/3	90	27

Coal is 24 mmBTU/ton

Description of Systems:

- Leaving biomass on ground
- Co-firing green biomass with coal

Co-firing field dried biomass with coal

Co-firing torrefied biomass with coal

Co-firing charred biomass with coal

Applying char to agricultural lands

Results:

Carbon Footprints

	Residuals Left on Ground	Green Wood Co-fire	Field Dry Wood Co-fire	Torrefied Wood Co-fire	Char Co-fire	Char to Soil
Biomass Growth	-1833	-1833	-1833	-1833	-1833	-1833
Feller/Buncher		2.3	2.3	2.3	2.3	2.3
Skidder		6.6	6.6	6.6	6.6	6.6
Chipper		6.9	6.9	6.9	6.9	6.9
Torrefaction/Char						
Emissions		0	0	550	744	744
a						
Size Reduction		34.5	19.9	5.2	2.2	2.2
Avoided Fraissiens		240	F20	F24	220	
Avoided Emissions Emissions from		-349	-538	-521	-320	
Combustion		1833	1833	1283	1089	
Combastion		1033	1033	1203	1003	
Decay Emissions	1827					
Carbon Emissions in Soil						
Application						2.2
Carbon Sequestered in						
Ground						-1089
Carbon Footprint						
(no transport)	-6	-298	-502	-500	-301	-1068

Units: Ibs CO2e/ton green wood

Carbon Footprint of Various Systems

Global Warming Potential: Biomass Gasification for Power

Fig. 5. Greenhouse effect indicator.

Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Matteo Carpentieri *, Andrea Corti, Lidia Lombardi, Energy Conversion and Management 46 (2005) 1790–1808

Manufacturing Costs:

Cost Per Green Ton	Comments
\$2.36	
\$0.74	
\$6.03	
\$9.12	
30%	
\$11.86	
\$0.23	
\$23.00	Bergman 05, p. 55
\$45.00	Roberts et al, 2010, S20
\$3.30	Roberts etal, 2010, SI18
\$1.00	
0.0000139	\$/kJ
	Bergman, 2005
195	kJe/kg
180	kJe/kg
90	kJe/kg
75	kJe/kg
	\$2.36 \$0.74 \$6.03 \$9.12 30% \$11.86 \$0.23 \$23.00 \$45.00 \$3.30 \$1.00 \$60 0.0000139

Cost per Ton of Product by Distance to Destination

Fuel Cost per MMBtu Electricity by Distance to Plant

Carbon Prices:

Carbon pricing: placing a price on carbon through either subsidies, a carbon tax, or an emissions trading ("cap-and-trade") system.

Associating an approximate cost to damage such as increasing extreme weather, carbon pricing may be used as an incentive to cut carbon emissions.

"Carbon Price". Global Greenhouse Warming.com. Retrieved 2010-09-01.

Source: www.pointcarbon.com. One Euro equals about \$1.5.

Calculation of Minimum Carbon Prices:

$$Minimum\ Carbon\ price\ \left(\frac{\$}{\mathsf{ton}\ \mathsf{CO2}}\right) = (\frac{\$Cost\ Biomass-\$Cost\ Coal}{MMBTUe})(\frac{MMBTUe\ by\ Biomass}{Ton\ CO2\ saved})$$

(Added cost to utilize biomass) (Amt of CO2 saved using biomass)

$$Minimum\ Carbon\ price\ \left(\frac{\$}{\mathsf{ton}\ \mathsf{CO2}}\right) = \left(\frac{\$Cost\ to\ Apply\ Char\ to\ land}{ton\ biomass\ consumed}\right) \left(\frac{ton\ biomass\ consumed}{Ton\ CO2\ saved}\right)$$

(Added cost to utilize biomass) (Amt of CO2 saved using biomass)

Minimum Carbon Price Required to Promote Biomass System

Summary

- Char to ground has the lowest carbon footprint
- Life Stagest that Dominate the carbon footprint:
 - Biomass growth
 - preprocessing (torrefaction and charring)
 - co-firing
- Transportation distance not important for carbon footprint
- Transportation distance very important for costs
- Field Dried or torrefied wood, under the model assumptions, have the most potential for commercial viability in a carbon market
 - Require travel distances of less than 100 miles

Acknowledgements:

- Dr. Robert Jackson, Director Center on Global Change, Host, Carbon Sequestration
- Dr. Jay Golden, Director, Duke Center for Sustainability & Commerce Environmental Life Cycle Analysis, LCA/sustainability
- Dr. Lincoln Pratson, Professor of Earth and Ocean Sciences, Energy and the Environment, energy
- Dr. Dan Richter, Professor of Soils and Forest Ecology, forest decay
- Mr. Chris Galik, Nicholas Institute for Environmental Policy Solutions, coal plants and electricity
- Chris Hopkins, NCSU, forestry practices, biomass pretreatment
- Dr. Daniel Saloni, NCSU, Forest Biomaterials

Minimum Carbon Price Required to Promote Biomass Systems: Carbon Footprints

Material Balances of 1 Ton green wood

	Units	Green Wood	20% MC Air Dry Wood	Torrefied Wood	Charred Wood
Total Material		1	0.625	0.33	0.165
Total Material Loss	mass/mass	0	0.375	0.67	0.835
Solids		0.5	0.5	0.33	0.165
Solids Loss	mass/mass	0	0	0.34	0.67
Water		0.5	0.125	0	0
Water Loss	mass/mass	0	0.75	1	1
Carbon		0.25	0.25	0.175	0.1485
Carbon Loss	mass/mass	0	0	0.3	0.406
% Carbon (dry basis)		50	50	53	90

MMBTU/ton	
Green Wood	7.4
Air Dry Wood (20% MC)	14
Torrefied Wood	22
Coal	24
Charred Wood	27
Efficiency Thermal to Electricity	
Green Wood	23%
Air Dry Wood (20% MC)	30%
Torrefied Wood	35%
Coal	35%
Charred Wood	35%

Note: leaving residuals on ground causes decay, produces a -6 lb CO2/ton carbon footprint