

paper science nc state university

Paper Primer

Dr. Richard Venditti Paper Science and Engineering NC State University September 24, 2015

Course Objectives

- 1. Overview of the industry and products
- 2. Wood and Fiber Supply
- 3. Methods of Production
- 4. Environmental Impacts
- 5. Paper recycling
- 6. Environmental LCA

paper science nc state university

1. Overview of the industry and products

Importance of Paper

- v Society vitally depends on paper products
- Paper plays an important role in so many areas of human activity
 - Communication
 - Packaging
 - Tissue and toweling
 - Health Products
 - Filtration.....

Paper History

- The word paper is derived from from the Egyptian reedy plant PAPYRUS, whose stem was beat and pressed into thin layers (3000 BC.
- v Paper was invented in China in 105 AD
 - Ability to have information on paper won wars and kept Emperors in power
- v 1100s, paper introduced to Europe
- v 1400s printing press with movable type created
- v In the 1700- automated paper machines were created
- v 1800s kraft and mechanical pulp manufacturing
- v 1900s modern kraft pulp mills and new paper grades

Pulp and Paper -- Definitions

- "Pulp" refers to the mass of fibers which results when plant material is disassembled, either mechanically or chemically
- v Pulp is the raw material for paper

An "Integrated" Manufacturing Facility

Paper – The Technical Definition

A web consisting of cellulose fibers – extracted from plants -- deposited from a water suspension

and then dried to form inter-fiber

hydrogen bonds

CONSUMPTION OF PAPER AND BOARD, LB/PERSON (CIRCA 2010)

North America has the largest per capita demand by a large margin

Worldwide Consumption of Paper and Paperboard

Source: RISI

Production of Paper and Board

The World's Largest Paper and Paperboard Industries

2012 Paper & Board Global Production			
	1,000 tonnes	% of Global	
1. China, People's Rep.	102,500	25.6	
2. USA	74,375	18.6	
3. Japan	26,083	6.5	
4. Germany	22,630	5.7	
5. Sweden	11,417	2.9	
6. South Korea	11,333	2.8	
7. Canada	10,751	2.7	
8. Finland	10,694	2.7	
9. Brazil	10,260	2.6	
10. Indonesia	10,247	2.6	

Total Global Production: 400 million metric tons

U.S. Paper & Packaging Industry

Total sales	\$115 billion
Contribution to US GDP	\$ 250 billion
Total persons employed	1,300,000
Total payroll	\$ 30 billion
Number of trees planted	1.5 billion
Ranking of all US industries	Тор 10

Paper and Board Industry is the 4th largest in the US.

Paper Products

- Printing and Writing
 - Newsprint
 - Light weight coated magazines
 - Coated free sheet
 - Bond (Copy Paper)
- Board
 - Carton board (multi-layered thick board)
 - Container board (fluted boxes...)
 - Specialty
- Tissue
- Fluff Pulp
- Dissolving Pulp
- Others...

U.S. Paper and Paperboard Production

	Production 000 tons
Newsprint	3,000
Writing and Printing	18,000
Other Paper(s)	3,000
Tissue	8,000
TOTAL PAPER	32,000
TOTAL PAPER & BOARD	79,000

	Production 000 tons
Unbleached Kraft Paperboard	21,000
Solid Bleached Paperboard	5,000
Semichemical Paperboard	6,000
Recycled Paperboard	15,000
TOTAL PAPERBOARD	47,000
TOTAL PAPER & BOARD	79,000

Board is > 0.25mm

Worldwide Paperboard Production

Worldwide Production in 2009 (thousands of tons)

Cost of a Pulp and Paper Mill

 Modern pulp and paper mill capital cost is approximately \$1 Billion Dollars for a mill that makes a million tons of paper per year.

v Extremely capital intensive

- Requires significant land and access to water
- Large equipment to produce over 1000 tons per day
- Chemical and wood handling facilities required
- Energy production equipment
- Gas and water treatment systems

The Future: Forest Biorefinery

Section Summary

- Paper is used in many different types of products and is an essential component of our lives
- About 400 million tons of paper produced per year, and increasing
- China and US are the leaders
- A very capital intensive industry

Questions?

NC STATE UNIVERSITY

paper science nc state university

2. Wood Supply and Fiber Supply

Section Learning Objectives

- v Learn about forests
- v Learn about the woodyard process
 - debarking
 - chipping
 - chip screening
- v Learn about wood structure
 - Hardwood
 - softwood

Global Forests (Food and Agricultural Organization (FOA) of the United Nations, Global Forest Resources Assessment 2010)

- v Forests cover **31% of total global land**, 4000 million hectares
- About 13 million hectares of forest are converted to other uses or naturally lost per year, S. America and Africa dominate losses
 - Fires, pest, disease, invasive species impact forests
- **v Net changes** of forest area are about -5.2 million hectares per year
- World forests store 289 gigatonnes of carbon, decreasing by about 0.5 Gt per year
- v 36% of forests are primary, native undisturbed
- v 13% are protected areas
- v 30% of forests are primarily used for forest products
- v Forests are managed for many different reasons

FIGURE 1 The world's forests

Note: Tree cover derived from MODIS VCF* 250 meter pixels for year 2005.

* Moderate-resolution imaging Spectroradiometer Vegetation Continous Fields (Hansen et al. 2010).

2010

FIGURE 4 Annual change in forest area by region, 1990–2010

FIGURE 6

Trends in carbon stocks in forest biomass, 1990–2010

Complexities of global sustainable supply chain

Global brands strategically source raw materials from emerging markets for operating cost efficiencies

> • Indonesia, China, Vietnam, Brazil, Africa

Global brands looking to establish a zero deforestation policy

- Brands are sourcing globally under intense public scrutiny and have responded with sustainable global sourcing policies
 - McDonald's, Nutela, 3M, Disney, Unilever, Procter & Gamble, APP
 - Publishers Environmental Book Council, Random House Penguin
 - Retailers Walmart, Marks & Spencer, Loblaws

Slide courtesy of Ian Lifshitz, APP

Sustainable Sourcing Options

v Certifications help ensure the public that products are sourced sustainably

- Guideline for suppliers to provide proof that manufacturers invest in sustainable production
- Commitment from suppliers to economic and social development in the countries where materials are produced
- Commitment to sustainable practices; 100% compliance with the laws of the raw materials' country of origin
- v Multiple types of certification
 - Legality e.g., Lacey Act compliance (ban of illegally sourced wood and wood products); EUTR (European timber regulation);
 - Sustainability/Environmental e.g., PEFC, SFI, FSC for sustainable forest management; ISO (world standard for sustainable production)

Slide courtesy of Ian Lifshitz, APP

Growth Rates (m3/ha/year)

Softwood Growth Rates Pine Plantations

Hardwood Growth Rates

Industrial Wood Consumption

Generic Woodyard Flow Chart All waste streams used for green energy

Softwood (left) and hardwood (right)

- Softwood is long (4mm) and strong: used for paperboard that needs high strength
- Hardwood is short (1 mm) and fine: used for printing grades that need smoothness

Releasing the fiber from the lignin (chemically or mechanically pulping) is the 1st step in making paper.

Section Summary

- v There is a net reduction of forest lands, about 0.1% loss per year
- Significant losses in forest lands from sensitive areas that support wildlife diversity, while other areas have increases
- v Wood comes into the mill as chips or logs
- v Softwoods are long fibers, make strong paper
- v Hardwoods are short fine fibers, make smooth paper for writing
- v Wood contains cellulose, hemicellulose and lignin
- v Lignin glues the cellulose based fibers together in wood

Questions?

NC STATE UNIVERSITY

paper science nc state university

3. Pulp and Paper Manufacturing

What is Pulping ?

Middle Lamella Concentrated in lignin (glue)

The fibers have to be separated at the middle lamella (*mostly lignin*) without damaging the fibers

Pulping Methods

- Use chemicals that dissolve the lignin in the middle lamella so that the fibers can be separated easily
 - CHEMICAL PULPING

- Apply mechanical energy to cause the fiber to break away
 - MECHANICAL PULPING

Chemical Kraft Pulping

Key points: uses green energy, energy sufficient often, recycles chemicals and water

Bleaching of Chemical Pulps

- After kraft pulping, some lignin
 remains making the pulp dark brown
- Bleaching with chlorine dioxide, alkali, and peroxide renders the pulp bright white
- About 20-30 years ago elemental chlorine was used, but its use has stopped due to environmental concerns
- Currently, chlorine dioxide is used to bleach 97% of pulps, this is called ECF
- Total chlorine bleaching (TCF, no chlorine dioxide at all) is used as a specialty product
- No relevant environmental improvements have been documented for TCF over ECF

Mechanical Pulping

- Most of the constituents of wood retained
 - Results in high yield (90-95%)
- Composed of fiber bundles, fiber fragments, some whole fibers
- Weak sheet. Long fibers need to be mixed.
- High opacity and good printing product
- High lignin content makes it discolor easily
- v High energy usage

How is paper made?

Wood contains papermaking fibers glued by lignin in a matrix.

Mechanical Pulp (lignin containing, yellows with age) (newsprint, magazines)

North American Pulp Production

- v Mechanical Pulping = 21% of production
- v Chemical Pulping = 72% of production
- v Semichemical = 5% of production

	2010	2011	%
Chemical	51,986	52,470	75
Mechanical	12,586	12,001	17
Semichemical	3,282	3,577	5
Dissolving	1,514	1,952	3
Total	69,368	70,001	100

Questions?

Papermaking

- The process of making a slurry of fibers in water into a consolidated sheet of paper
- v We use water to distribute the fibers randomly in a network
- v Removing the water gives the sheet strength
- Cellulose fibers use hydrogen bonding to develop strength in paper, no glue is needed
- v Did you know paper is stronger than steel on a weight basis?
- v This makes paper recyclable, add water, remove the bonds

Paper Machine Operations

- v Dilute fibers in water in a headbox (0.5%)
- v Deliver the fibers onto a moving wire
- v Remove water
 - Gravity; Vacuum; Pressing; Heat drying
- v Collect on a reel

Typical Paper Making Furnishes

	Copy Paper (Uncoated Free Sheet)	Linerboard (Top Liner)	Premium Bath Tissue	Market Pulp	Fluff Pulp
Fibrous Component	20% softwood (for strength) 80% hardwood (for smoothness) Bleached	100% virgin softwood unbleached OR 100% recycled (OCC)	20% northern softwood kraft (for strength) 80% eucalyptus (for softness)	100 % hardwood OR 100% softwood	100% southern softwood
Additives	 Retention aid (starch or CPAM) Fillers (clay and/or calcium carbonate) Sizing (ASA or AKD) Wet strength agent (starch) Alum???? 	 Retention aid (starch or CPAM) Sizing (rosin, for acid papermaking) Alum (to set rosin on fiber) Dry strength agent (starch) Wet strength agent? 	 Retention aid (starch or CPAM) Wet strength agent (GPAM for short-term strength) Debonder for softness (quaternary amine) 	Only runnability aids	 Debonder (to reduce fiberization energy for customer) Runnability aids
Refining	Moderate to High	High	Very low ("tickle" refining)	None	None
Basis Weight	50 – 100 g/m2	125 – 430 g/m2	12-20 g/m2	400 – 800 g/m2	685 – 765 g/m2

Refining

- Refining is a physical treatment performed on pulp fibers to improve their papermaking characteristics
- It is essential to production of strong, smooth, useful paper
- v Electricity intensive: 40-400 kWhr/ton
 - Lightbulb is 0.06 kWhr

Native shape

Refining

M. Hubbe, online encyclopedia of paper: http://www4.ncsu.edu/~hubbe/

Elements of the Gravity Section

The paper can travel at speeds of 80 miles per hr!! Paper Breaks are not fun. If this machine makes 1000 tons per day, it drains about 200,000 tons per day of water!

1 lb fiber/ 200 lb water Slice Headbox Forming 1 lb fiber/ 4 lb water Board **Foils Stock** Table Slurry Rolls BREAST ROLL Forming Fabric (Wire)

Presses to Remove Water

Paper Drying Drums

Fig. 17-7. The drying configuration.

Paper machines are as long as a football field, see person on left.

Enclosed dryer hood

Jumbo Rolls on Reel

Converting Operations

- v Sheeting of paper
- v Creation of boxes
 - corrugated
- v Coating
- v Tissue making
- v Others

What is coating?

 It is often said that papermakers do not sell paper, but sell a surface. By coating the paper we can dramatically improve the smoothness, gloss, brightness, and opacity. This creates a surface that is desirable to many customers.

Coating Formulation

- The coating may form up to 30% of the total weight of paper.
- v The coating typically consists of:
 - Water
 - Pigments
 - Binders
 - Additives
- Typically the paper is passed through a reservoir of the coating and then doctored by blade, air or rod to a uniform thickness

Section Summary

Pulping to liberate fibers Need certain types of fibers for certain products. Papermaking is a huge dewatering process. Drying is a huge consumer of energy. Converting operations to make usable products, add value.

Questions?

NC STATE UNIVERSITY

paper science nc state university

4. Environmental Impacts

Natural Resources Consumed

v Wood

- Mechanical pulp uses ~2 tons of wet wood per ton of paper
- Chemical pulp uses ~4 tons of wet wood per tone of paper
 - Mass loss of woody material used for green energy (DOE Data below)
- v Water
 - Use ~40-100 tons of water per ton of paper produced

Wastes Generated

- v Air emissions
- v Water emissions
- v Solid waste

Air Emissions

v Particulates

- Recovery boilers
 - soda fumes (Na₂SO₄, Na₂CO₃, NaCl)
- Coal and hog fuel boilers
 - fly ash (ash, char)
- Lime kilns
 - lime dust (CaCO₃)
- v Control
 - Fabric filtration
 - Electrostatic precipitation
 - Wet scrubbing

Scrubbing the Gas

Air Emissions

v Gaseous emissions

- Nitrogen oxides
 - all high temperature combustion processes
- Reduced sulfur gases (TRS): causes odor
 - all kraft pulping and recovery operations
 - hydrogen sulfide (1ppb), methyl mercaptan (1ppb), dimethyl sulfide (10ppb), dimethyl disulfide (10ppb)
 - ppb = part per billion, one drop of ink in a gasoline tanker truck
 - ppb = 1 / 1,000,000,000
- Volatile organic compounds (VOC)
 - Non-condensable gases from digester, liquor evaporation, bleaching
 - alcohols, terpenes, phenols, chloroform

v Control: Collection of the gases

- Thermal incineration: lime kiln, boilers, incinerators
- Wet scrubbing
- Catalytic combustion
- Adsorption

Kraft Mill Example: EPA DMR & TRI Data

AIR					Mt Emissions	
Program	Pollutant	Units/year	2013(mt	/hr)	Per mt Raw Mat	Per admt SBSK
GHG	Methane	MTCO2e	32,478.75	3.87E+00	2.62E-02	7.36E-02
GHG	Carbon dioxide	MTCO2e	1,998,394.80	2.38E+02	1.61E+00	4.53E+00
GHG	Nitrous oxide	MTCO2e	9,179.89	1.09E+00	7.40E-03	2.08E-02
TRI	Ammonia	Pounds	152,322.00	8.23E-03	5.57E-05	1.57E-04
TRI	Formaldehyde	Pounds	5,227.00	2.82E-04	1.91E-06	5.37E-06
TRI	Chlorine	Pounds	1,985.00	1.07E-04	7.26E-07	2.04E-06
TRI	Lead compounds	Pounds	166.4	8.99E-06	6.09E-08	1.71E-07
TRI	Phenol	Pounds	5,620.00	3.04E-04	2.06E-06	5.78E-06
TRI	Vanadium compounds	Pounds	10	5.40E-07	3.66E-09	1.03E-08
TRI	Zinc compounds	Pounds	895	4.83E-05	3.27E-07	9.20E-07
TRI	Hydrochloric acid	Pounds	59,712.00	3.23E-03	2.18E-05	6.14E-05
TRI	Manganese compounds	Pounds	506	2.73E-05	1.85E-07	5.20E-07
TRI	Polycyclic aromatic compounds TRI	Pounds	207.5	1.12E-05	7.59E-08	2.13E-07
TRI	Barium compounds TRI	Pounds	494	2.67E-05	1.81E-07	5.08E-07
TRI	Hydrogen sulfide	Pounds	77,574.00	4.19E-03	2.84E-05	7.98E-05
TRI	Mercury compounds	Pounds	14	7.56E-07	5.12E-09	1.44E-08
TRI	Acetaldehyde	Pounds	29,056.00	1.57E-03	1.06E-05	2.99E-05
TRI	Methanol	Pounds	541,031.00	2.92E-02	1.98E-04	5.56E-04
TRI	Formic acid	Pounds	195	1.05E-05	7.13E-08	2.01E-07
TRI	Chlorine dioxide	Pounds	5	2.70E-07	1.83E-09	5.14E-09
	SUM Emissions (less CO2e)			4.73E-02	3.20E-04	9.00E-04

Water Pollution

v Any change in the condition of water which is detrimental to some beneficial use

- Effluent solids
 - Total suspended solids
- Oxygen demand Organic compounds from a mill can deplete oxygen in the water needed for living organisms --- COD or BOD
- Chlorinated compounds
 - Absorbable organic halides (AOX)
 - Chlorinated dioxin and furans
- Color

Origin of Waste Load

External Treatment

Kraft Mill Example: EPA DMR & TRI Data

WATER

Discharges to Chemical Groups by Pounds (lbs) Chemical Group	2013	3 2013	32013 Total			
	DMR	TRI	SUM		Mt Emissions	
	(lbs/vr)	(lbs/vr)	(lbs/vr)	(mt/hr)	Per mt Raw Mat F	Per admt SBSK
ACETALDEHYDE		5,723	5.7	23 3.09E-(04 2.09E-06	5.88E-06
AMMONIA	134,919	2,765	5 137,6	84 7.44E-(03 5.04E-05	1.42E-04
BARIUM AND BARIUM COMPOUNDS		10,064	10,0	64 5.44E-(04 3.68E-06	1.03E-05
BOD, 5-day, 20 deg. C	1,383,101	1	1,383,1	01 7.47E-(02 5.06E-04	1.42E-03
CATECHOL		84	ļ .	84 4.54E-0	06 3.07E-08	8.64E-08
FORMALDEHYDE		2,603	3 2,6	03 1.41E-0	04 9.52E-07	2.68E-06
FORMIC ACID		277	· 2	77 1.50E-(05 1.01E-07	2.85E-07
Halogens, adsorbable organic	154,396	5	154,3	96 8.34E-(03 5.65E-05	1.59E-04
HYDROGEN SULFIDE		409) 4	09 2.21E-(05 1.50E-07	4.21E-07
LEAD AND LEAD COMPOUNDS		137	' 1	37 7.40E-0	06 5.01E-08	1.41E-07
MANGANESE AND MANGANESE COMPOUNDS		43,752	2 43,7	52 2.36E-(03 1.60E-05	4.50E-05
MERCURY AND MERCURY COMPOUNDS		3	3	3 1.62E-0	07 1.10E-09	3.08E-09
METHANOL		13,892	2 13,8	92 7.50E-(04 5.08E-06	1.43E-05
NITRATE COMPOUNDS		17,910) 17,9	10 9.67E-0	04 6.55E-06	1.84E-05
Nitrogen	348,613	3	348,6	13 1.88E-(02 1.28E-04	3.58E-04
PHENOL		1		1 5.40E-0	08 3.66E-10	1.03E-09
Phosphorus	53,830)	53,8	30 2.91E-0	03 1.97E-05	5.54E-05
Solids, total suspended	1,176,438	3	1,176,4	38 6.35E-0	02 4.30E-04	1.21E-03
VANADIUM AND VANADIUM COMPOUNDS		853	8 8	53 4.61E-0	05 3.12E-07	8.77E-07
ZINC AND ZINC COMPOUNDS		7,761	7,7	<u>61 4.19E-</u>	04 2.84E-06	7.98E-06
SUM Emissions				1.81E-	01 1.23E-03	(3.45E-03

Solid Waste

- Generated from the removal of suspended solids from water treatment, from pulp cleaning rejects, from combustion ash, and from other rejects in the mill
- Typically is around 3-5% for a virgin mill and can be from 2-50% of incoming material for a recycled mill
- Sludges from water treatment dominate total flow, typically 50% water and a lot of organic material
- v Currently a lot of research going on to find better ways to utilize

Section Summary

v Sources of pollution

- Air particulates, reduced sulfur gases, volatile organic compounds (VOC), less than 1 kg per ton product
- Water suspended solids, oxygen demanding substances (BOD, COD), organic halide compounds (AOX), about 3 kg/ton product
- Solid waste

Questions?

paper science nc state university

5. Paper Recycling

Why is paper recyclable?

Paper is a random web of wood fibers that are bonded mainly with hydrogen bonding.

Hydrogen bonds are reversible, they are weakened when paper is put into water.

When wetted and mechanically agitated, paper falls apart into individual fibers.

This is the basis of paper recycling.

How is paper made?

the wood by either chemical or mechanical actions.

Major Recycling Systems

Categorize by the products they produce:

- Unbleached Kraft Pulp, Packaging Materials (like corrugated boxes)
 - Typically, OCC (old corrugated containers) materials are recycled back into linerboard, medium, tube stock, and solid board products

Newsprint (mechanical pulps)

- Old newspapers (ONP) and magazines (OMP) are converted into newsprint

Tissue (varied compositions of input paper)

- Bleached printing and writing wastes are converted into tissue

Printing and Writing Materials (bleached Kraft pulps)

- Bleached printing and writing wastes are converted into pulp for application in new printing and writing grades

Source: RISI

920 1,578 142

58,489

53,736

World Paper Production 2011

0.6 1.4 7.9 Recovered Paper Chemical Pulp Semi-Chemical Pulp 32.9 Mechanical Pulp 57.2 Other

WORLD RECOVER	ED PAPER STAT	ISTICS BY REC	GION 2010 - 201	1 (1,000 tonnes)			
	Recovery		Imp	orts	Exports		
	2010	2011	2010	2011	2010	2011	
Asia	87,883	91,447	34,301	36,694	6,956	7,247	
Europe	63,382	64,070	15,060	15,867	23,086	24,920	
North America	51,123	52,384	1,769	1,738	20,640	22,962	
Latin America	10,925	11,464	2,173	2,128	729	920	
Oceania	3,650	3,610	3	3	1,634	1,578	
Africa	2,447	2,451	32	29	102	142	
Middle East	2,416	2,751	176	241	590	720	

53,515

56,700

228,176

(Total Production = 400million metric tons)

221,825

Total

% of Paper and Board Production

MSW by Material Before Recycling

Figure 5. Total MSW Generation (by material), 2009

Source: EPA Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2009

Recycled Fiber Definitions

- v Recovery Rate (RR)
 - how much wastepaper is diverted from landfill

 $RR = 100\% \frac{Tons of Wastepaper Collected}{Tons of Paper Consumed}$

- v Utilization Rate (UR)
 - fraction of recycled fibers contained in paper

 $UR = 100\% \frac{Tons of Wastepaper Consumed at Mills}{Tons of Paper Produced}$

Products with highest % recovery.

- v Lead acid batteries, 96%
- v Corrugated boxes, 85%
- v Newspapers, 72%
- v Steel packaging, 69%
- v Major appliances, 65%
- v Yard trimmings, 58%
- v Aluminum cans, 50%
- v Mixed paper, 45%
- v Tires, 35%
- v Glass Containers, 31%
- v HDPE, milk containers, 29%
- v PET Bottles, 28%

Source: Wikipedia

Source: EPA Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2009

US Recovery of Paper Positively Impacts Landfill Volume

Paper/board Recovery Rate in the US:

Recovered and Landfilled Paper

Where US Recovered Paper Goes:

Source: afandpa.org, 2011

Graphed in U.S. Dollars / Original Units
Copy
White top liner
DI Pulp

1,100 -

1,000

Paper Recycling Operations

w Why is it easy to recycle paper?

- There is no glue holding fibers together
- Put paper in water and the fibers come apart
- Remove water and you can form paper that is bonded

v Why is it hard to recycle paper?

- Lots of contaminants
 - Large junk, plastic, foil, adhesives (stickies), inks, glass.....
- Certain fibers & coatings act as contaminants if mixed in with other types of fibers
- Can be expensive relative to virgin paper from wood
- Hard to meet optical, cleanliness, strength properties

Collection of Recovered Paper: Sources

- Recovered paper dealers or brokers
- v From paper converting facilities
- v From large office complexes
- v From stores
- From individuals in their private vehicles
- v From material recovery facilities
 - Municipal waste that is sorted for glass, metal, plastics and paper....
 - Single stream sourcing is becoming more popular because it increases yield, municipalities love it!!!!!
 - Single stream sourcing introduces issues to the paper recycling mill (glass)

Major Recycling Unit Operations

- v Pulping
- v Cleaning
- v Screening --- these three ops are enough for boxes
- v Deinking --- needed for printing or tissue
 - Washing
 - Flotation
- v Dispersion and Kneading
- Bleaching --- often needed for printing or tissue
- v Water Treatment
- v Solid Waste Handling

Pulping

- Water breaks hydrogen bonds between fibers
- Motion of rotor causes a vortex of pulp stock. The baffles are used to improve mixing.
- High mechanical force due to impacts of rotor separate fibers
- v Possibility to damage fibers

Screening

- Screening separates contaminants based mainly on size, but also on shape and deformability
- A barrier that rejects large contaminants and lets fibers pass
- v Produces solid rejects (1% or so)

Centrifugal Cleaner: Features and Flow

- λ High density contaminants are slung to outside and out rejects port (bottom)
- λ good fibers stay in middle and go out accepts (top) port
- λ Solid Rejects from cleaner systems (1%)

Washers

- Definition: a separation device that rinses small particulate contaminants away from fiber while minimizing fiber loss
- Washing wire allows small contaminant particles to pass but retains fibers (opposite of screening)
- v Dinking Washer
 - Dilute pulp with wash water
 - Disperse small contaminant in water phase
 - Remove contaminant laden water
 - Always a compromise between fiber/fine loss and ink removal
- Solids washed through the screen, fine rejects, 5-15% roughly

Flotation

- Definition: a process in which hydrophobic contaminants are preferentially removed from a pulp stock by attachment to air bubbles.
- Air bubbles contact inks and remove them with foam that is rejected
- v Solid rejects, 1-5% roughly

Simple Cleaning System for Packaging Product

High Grade Printing and Writing Grades Eresh water

Amount of Rejects and Sludges from Recycling:

		Produced paper	Recovered paper grade	Amount of total waste
				[% by dry weight]
	Drinting Miriting	Graphic paper	News, magazines	1520
ν	Printing writing:		Superior grades	10-25
ν	Tissue Paper:	Hygienic paper	Files, office paper, ordinary, medium grades	28–40
		Market DIP	Office paper	32-40
ν	Corrugated box:	Liner, fluting	Sorted mixed recov. paper, supermarket waste	4–9
ν	Shoe/cereal box	Board	Sorted mixed recov. paper, supermarket waste	4-9

How many times can paper be recycled?

- v Not easy to determine, depends on type of fiber also
- If we assume that 20% of our fibers are lost on average during a recycling process
- Crudely, a fiber is recycled about 4-5 times before it ends up in the rejects of a recycling process

Section Summary

- v Paper recycling is more than 50% of entire paper industry
- v Papers are sorted based on type of pulp fiber
 - Cross-contamination of different fibers reduces value of recovered paper
- v High demand for recovered paper and it's very economical
- v Recycling operations involve contaminant removal and generates solid waste
- Paper making fibers wear out after multiple use. It's necessary to replace these fibers with virgin fibers

Questions?

paper science nc state university

6. Environmental LCA of Paper

Life Cycle Stages of Paper

Benefits from sold electricity Avoided emissions: landfill methane capture and burning for energy Avoided emissions: product burning for energy Manufacturing biomass CO₂ emissions

Data and Graphs from NCASI LCA P&W Grades, 2010 Software used from NCASI, FEFPRO

Summary of key points of LCAs of paper

- Paper has an advantage over petroleum products in that it is renewable and biodegradable
- Petroleum products tend to have several environmental advantages in other LCA impact categories
- One must note that plastics and paper often have different function and performance that makes some comparisons very complex.
- In general, recycled paper many environmental performance impacts (but not all) than virgin paper
- Strong caution, virgin and recycled fiber are part of the same life cycle and it is strictly not fair to compare them against each other, also highly controversial with respect to allocations of burdens (see later) (also see: *Effect of life cycle analysis methodology choices on the environmental life cycle analysis results for recyclable paper products, White Paper* revised January 7, 2012, a discussion of three major LCA studies for paper products, a discussion about recycling allocation methods, and an in-depth investigation of the carbon footprints of coated freesheet and coated mechanical sheet. Powerpoint presentation based on the document appears in above list as LCA of Paper Products.

Summary of key points of LCAs of paper

- v Paper products consume wood and the associated lands to grow it
 - This is good in developed countries encourages more forests
 - This can have issues in developing countries if wood is not sustainably sourced
- v Life-cycle stages
 - Raw materials such as wood and water impact GWP and water footprint
 - Manufacturing process significantly impacts many environmental categories
 - Purchase chemicals and fuels
 - Use phase not so important
 - Transportation phase not so important
 - End-of-life could be very important, especially concerning GWP
 - Assumption whether paper decays in landfills is critical

Full Life Cycle Analysis of Paper

Table ES-6. LCIA Results – Catalog, Coated Freesheet

Impact category	Unit	Total (unit/ catalog)	1- Fiber procurement	2- Coated freesheet production	3- Production of catalogs	4- Transpor t and use	5- End- of-life	Storage in use and landfill
Global Warming (GW)	kg CO ₂ eq.	4.89E-01	5.4%	43.6%	15.7%	1.2%	37.7%	-3.4%
Acidification (AC)	H ⁺ moles eq.	1.67E-01	7.6%	67.4%	21.1%	1.1%	2.9%	
Respiratory effects (RES)	kg PM _{2.5} eq.	6.52E-04	3.5%	77.9%	15.6%	0.3%	2.6%	
Eutrophication (EU)	kg N eq.	8.85E-04	1.9%	19.0%	6.2%	0.2%	72.8%	N/A
Ozone depletion (OD)	kg CFC- 11 eq.	2.63E-08	6%	53%	31%	4%	7%	
Smog (SM)	kg NOx eq.	2.10E-03	7.7%	36.4%	48.7%	1.8%	5.3%	
Fossil fuel depletion (FF)	MJ surplus	3.94E-01	9.3%	52.4%	29.8%	2.6%	5.9%	

Catalog weighs 0.135 kg.

GWP of a plastic is about 0.9 kg CO2/.135 kg, about **twice** that of paper.

Example 2 Contract Results obtained using the ecoinvent database only (see Section 9.3.1.2 for more details)

National Council for Air and Stream Improvement, Inc. (NCASI). 2010. *Life cycle assessment of North American printing and writing paper products*. Unpublished Report. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

Life Cycle Analysis of Kraft Pulp

Table 9: Relative Contribution of Process Inventory to Environmental Impact Categories. Data is based on the SOL-P scenario. Other scenarios are consistent with these results.

												i ransport,	
Total	NaQH.		H2O2,				CO2				Solid	Raw	Transport,
Emissions	50%	CaQ	50%	H ₂ SO ₄	NaClO ₃	CH₃OH	(gas)	NG	DE	SW	Residue	Matls.	Feedstock
GW	10%	6%	3%	1%	22%	0%	4%	84%	720%	-757%	0%	1%	7%
AD	4%	0%	1%	6%	8%	1%	1%	58%	1%	16%	0%	1%	4%
CG	9%	0%	4%	2%	39%	0%	3%	28%	0%	2%	11%	0%	1%
NCG	3%	0%	5%	1%	46%	1%	1%	42%	0%	1%	0%	0%	0%
RE	6%	1%	1%	7%	13%	1%	1%	63%	0%	5%	0%	0%	2%
EU	9%	1%	2%	2%	16%	0%	3%	13%	0%	14%	35%	1%	4%
OD	8%	5%	4%	1%	16%	1%	4%	43%	0%	0%	1%	2%	15%
EC	18%	1%	12 %	1%	50%	0%	3%	10%	0%	3%	1%	0%	1%
SM	4%	1%	1%	1%	8%	0%	1%	21%	0%	50%	0%	2%	12%

T----

Virgin v. Recycled Products

- Recycled is more effective in reducing environmental impacts in many categories relative to virgin paper
- v However, it must be understood that
 - Recycled Fibers wear out in recycling, there must be virgin fibers to replace them
 - Recycled fibers would not exist without the existence of virgin fibers
 - For many high performance products virgin fibers are preferred
 - recycled fibers simply are not suited for the application
 - Due to the cost and the environmental impacts of upgrading the recycled fibers their use is not warranted
 - Recycled fibers have environmental impacts themselves
- v We need virgin fibers and need to use recycled fibers in a smart way

Recycled saves in many categories

Copy Paper

Clear Values, Start Again	Virgin Copy Paper	Recycled Copy Paper						
Paper	Uncoated Freesheet (e.g. copy paper)	Uncoated Freesheet (e.g. copy paper)						
Quantity	16000000 Tons	16000000 Tons						
% Postconsumer	0	100						
Wood Use	59,732,	736 tons						
Net Energy	520,894,541 million BTU's							
Greenhouse Gases	90.610.725.702 p	ounds CO- equiv						
Greenhouse Gases	56,523,997,280 pounds CO ₂	equiv.						
Water Consumption	365,655,404	.800 gallons						
	186,158,156,800 gallons							
Solid Waste	30,748,902,	400 pounds						
	18,733,139,200 pounds							
Nitrogen oxides (NOx)	152,216,723 pounds							
	134,423,776 pounds							
Purchased Energy	354,775,475 million BTU's							
	340,323,/12 Million B TU'S							
Sulfur dioxide (SO ₂)	426,909,587 pounds							
Destinulates	00 773 729 pounde							
Particulates	49.981.152 pounds							
Hazardous Air Pollutants	44.626.944 pounds							
(HAP)	13,643,309 pounds							
Volatile Organic Compounds	48,171,616 pounds							
(VOCs)	22,937,344 pounds							
Total Reduced Sulfur (TRS)	7,263,019 pounds							
	3,999,749 pounds							
Total Suspended Solids (TSS)	277,362,944 pounds							
	102,334,432 pounds							
Chemical Oxygen Demand	316,775,360 pounds 457 462 054 pounds							
Dischemical Owner Downerd	450 627 720 monda							
(BOD)	158,637,728 pounds 106,889,427 pounds							
	100,000,421 poundo							

Unbleached Board

Newspaper Print

raidoo, otarrrigani	au fur uc asbruc	Recycled Newsprint					
er	Uncoated Groundwood (e.g. newsprint)	Uncoated Groundwood (e.g. newsprint)					
antity	3000000 Tons	3000000 Tons					
ostconsumer	0	100					
od Use	6,333,2	70 tons					
Energy	101,683,275 million BTU's 57,701,790 million BTU's						
enhouse Gases	18,893,881,050 pounds CO ₂ equiv. 9,319,953,000 pounds CO ₂						
ter Consumption	53,891,977,500 gallons 43,287,555,000 gallons						
d Waste	5,673,436,500 pounds 1,858,768,500						
ogen oxides (NOx)	40,470,930 pounds 22,000,650 pounds						
chased Energy	104,640,675 million BTU's 55,895,985 million BTU's						
fur dioxide (SO ₂)	111,483,810 pounds 60,593,070 pounds						
ticulates	13,611,315 pounds 7,223,040 pounds						
ardous Air Pollutants P)	5,363,432 pounds 2,340,522 pounds						
atile Organic Compounds DCs)	2,350,836 pounds 4,213,568 pounds						
al Reduced Sulfur (TRS)	527,801 pounds 533,431 pounds						
al Suspended Solids (TSS)	27,307,350 pounds 26,725,950 pounds						
emical Oxygen Demand DD)	32,111,535 pounds 80,155,69	32,111,535 pounds 80,155,695 pounds					
chemical Oxygen Demand DD)	18,812,865 pounds 18,723,774 pounds						

Paper v. Plastic

- v Polystyrene foam, poly coated paper, wax coated paper, solid PLA cold cups
- v Functional unit: 10,000 cups
- v Focus on energy, solid waste, GWP, water use
- Life cycle inventory of foam PS, Paper based, and PLA foodservice products, Franklin Associates, 2011.

Paper v. Plastic Tradeoffs

- v Results show polystyrene foam to have lower energy, water and waste
- v Results show paper to have lower GWP
- v Polystyrene foam is not renewable or biodegradable
- v Paper is from a renewable resource and is biodegradable

Section Summary

- Paper has an advantage over petroleum products in that it is renewable and biodegradable
- Petroleum products tend to have several environmental advantages in other LCA impact categories
- In general, recycled paper has better environmental performance than virgin paper
- v Paper products consume wood and the associated lands to grow it
 - This is good in developed countries encourages more forests
 - This can have issues in developing countries if wood is not sustainably sourced
- v Manufacturing and end-of-life are critical life-cycle stages

Questions?

Thank you! Final Questions?

Dr. Richard Venditti Paper Science and Engineering NC State University E-mail: richardv@ncsu.edu Website: Go.ncsu.edu/Venditti

Thanks to Dr. Byrd, Dr. Pawlak and Dr. Jameel for allowing the use of their slides.